Public Utility Commission of Texas

The state

Texas Technical Reference Manual Version 11.0 Volume 2: Residential Measures Program Year 2024

Last Revision Date: November 2023

Public Utility Commission of Texas

Texas Technical Reference Manual Version 11.0 Volume 2: Residential Measures Program Year 2024

Last Revision Date: November 2023

Table of Contents

1	Inti	roduction	1
2	Re	sidential Measures	6
	2.1	RESIDENTIAL: LIGHTING	6
		2.1.1 ENERGY STAR [®] General Service LED Lamps Measure Overview	6
		2.1.2 ENERGY STAR [®] Specialty LED Lamps Measure Overview	17
		2.1.3 LED Nightlights Measure Overview	27
	2.2	RESIDENTIAL: HEATING, VENTILATION, AND AIR CONDITIONING	34
		2.2.1 Air Conditioner and Heat Pump Tune-Ups Measure Overview	34
		2.2.2 Central and Mini-Split Air Conditioners and Heat Pumps Measure Overview	42
		2.2.3 ENERGY STAR [®] Room Air Conditioners Measure Overview	57
		2.2.4 Packaged Terminal Heat Pumps Measure Overview	67
		2.2.5 ENERGY STAR [®] Ground Source Heat Pumps Measure Overview	77
		2.2.6 Large Capacity Split and Packaged Air Conditioners and Heat Pumps Measure Overview	85
		2.2.7 Evaporative Cooling Measure Overview	92
		2.2.8 ENERGY STAR [®] Connected Thermostats Measure Overview	96
		2.2.9 Smart Thermostat Load Management Measure Overview	.105
		2.2.10 Duct Sealing Measure Overview	.110
	2.3	RESIDENTIAL: BUILDING ENVELOPE	.128
		2.3.1 Air Infiltration Measure Overview	.128
		2.3.2 Ceiling Insulation Measure Overview	.138
		2.3.3 Attic Encapsulation Measure Overview	.152
		2.3.4 Wall Insulation Measure Overview	169
		2.3.5 Floor Insulation Measure Overview	.182
		2.3.6 Duct Insulation Measure Overview	.190
		2.3.7 Radiant Barriers Measure Overview	.196
		2.3.8 Cool Roofs Measure Overview	203
		2.3.9 Solar Screens Measure Overview	233
		2.3.10 ENERGY STAR [®] Windows Measure Overview	239
		2.3.11 ENERGY STAR® Low-E Storm Windows Measure Overview	.247
	2.4	RESIDENTIAL: WATER HEATING	255
		2.4.1 Water Heater Installations—Electric Tankless and Fuel Substitution Measure Overview	.255
		2.4.2 ENERGY STAR [®] Heat Pump Water Heaters Measure Overview	.264
		2.4.3 ENERGY STAR [®] Solar Water Heaters Measure Overview	.271
		2.4.4 Water Heater Tank Insulation Measure Overview	.278
		2.4.5 Water Heater Pipe Insulation Measure Overview	.285
		2.4.6 Faucet Aerators Measure Overview	.290
		2.4.7 Low-Flow Showerheads Measure Overview	.296

2.4.8 Showerhead Temperature Sensitive Restrictor Valves Measure Overview3	02
2.4.9 Tub Spout and Showerhead Temperature Sensitive Restrictor Valves	
Measure Overview	09
2.4.10 Water Heater Temperature Setback Measure Overview	17
2.5 RESIDENTIAL: APPLIANCES	21
2.5.1 ENERGY STAR [®] Ceiling Fans Measure Overview	21
2.5.2 ENERGY STAR [®] Clothes Washers Measure Overview	29
2.5.3 ENERGY STAR [®] Clothes Dryers Measure Overview	38
2.5.4 ENERGY STAR [®] Dishwashers Measure Overview	44
2.5.5 ENERGY STAR [®] Refrigerators Measure Overview	50
2.5.6 ENERGY STAR [®] Freezers Measure Overview	64
2.5.7 Refrigerator/Freezer Recycling Measure Overview	76
2.5.8 ENERGY STAR [®] Air Purifiers Measure Overview	81
2.5.9 ENERGY STAR [®] Pool Pumps Measure Overview	87
2.5.10 Advanced Power Strips Measure Overview	97
2.5.11 ENERGY STAR [®] Electric Vehicle Supply Equipment	07
2.5.12 Induction Cooking4	11

List of Figures

Figure 1. Central and Mini-Split AC/HPs—AC Survival Function	52
Figure 2. Central and Mini-Split AC/HPs—HP Survival Function	53
Figure 3. RACs—Survival Function	62
Figure 4. Faucet Aerators—Shower, Bath, and Sink Hot Water Use Profile	293
Figure 5. Low-Flow Showerheads—Shower, Bath, and Sink Hot Water Use Profile	299
Figure 6. Showerhead TSRVs—Shower, Bath, and Sink Hot Water Use Profile	306
Figure 7. Tub Spout/Showerhead TSRVs—Shower, Bath, and Sink Hot Water Use Profile.	315
Figure 8. Refrigerators—Survival Function	355
Figure 9. Freezers—Survival Function	369

List of Tables

Table 1. Residential Deemed Savings by Measure Category	1
Table 2. GSL LEDs—Baseline and Default Wattages for A-Shaped Lamps [,]	8
Table 3. GSL LEDs—Baseline and Default Wattages for Other Lamp Shapes,	8
Table 4. GSL LEDs—Interactive Effects for Cooling Energy Savings and Heating Energy Penalties	10
Table 5. GSL LEDs—In-Service Rates by Program Type	11
Table 6. GSL LEDs—Coincidence Factors	12
Table 7. GSL LEDs—Interactive Effects Factor for Cooling Demand Savings and Heating	
Demand Penalties	12
Table 8. GSL LEDs—Estimated Useful Life	14
Table 9. GSL LEDs—Revision History	16
Table 10. Specialty LEDs—Baseline and Default Wattages	18
Table 11. Specialty LEDs—Interactive Effects for Cooling Energy Savings and Heating Energy Penalties	20
Table 12. Specialty LEDs—In-Service Rates by Program Type	21
Table 13. Specialty LEDs—Coincidence Factors	21
Table 14. Specialty LEDs—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties	22
Table 15. Specialty LEDs—Estimated Useful Life	24
Table 16. Specialty LEDs—Revision History	25
Table 17. LED Nightlights—Interactive Effects for Cooling Energy Savings and Heating Energy Penalties	28
Table 18. LED Nightlights—In-Service Rates by Program Type	29
Table 19. LED Nightlights—Coincidence Factors	30
Table 20. LED Nightlights—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties	30
Table 21. LED Nightlights—Revision History	33
Table 22. AC/HP Tune-Ups—Equivalent Full Load Cooling/Heating Hours	37
Table 23. AC/HP Tune-Ups—Coincidence Factors	38
Table 24. AC/HP Tune-Ups—Energy Savings (kWh/ton)	39
Table 25. AC/HP Tune-Ups—Summer Peak Demand Savings (kW/ton)	39
Table 26. AC/HP Tune-Ups—Peak Demand Savings (kW/ton)	39
Table 27. AC/HP Tune-Ups—History	41
Table 28. Central and Mini-Split ACs—Baseline Efficiencies	46
Table 29. Central and Mini-Split HPs—Baseline Efficiencies	46
Table 30. Central and Mini-Split AC/HPs—Equivalent Full Load Cooling/Heating Hours	50

Table 31. Central and Mini-Split AC/HPs—Coincidence Factors	50
Table 32. Central and Mini-Split AC/HPs—RUL of Replaced AC	51
Table 33. Central and Mini-Split AC/HPs—RUL of Replaced HP	51
Table 34. Central and Mini-Split AC/HPs—Revision History	56
Table 35. RACs—Baseline Efficiencies for ER, ROB, and NC	58
Table 36. RACs—Efficient Condition Requirements	59
Table 37. RACs—Annual Operating Hours for Cooling	60
Table 38. RACs—Coincidence Factor	60
Table 39. RACs—RUL of Replaced Unit	61
Table 40. RACs—Revision History	65
Table 41. PTHPs—ER Baseline Efficiency Levels for Standard Size PTACs	68
Table 42. PTHPs—ROB Minimum Efficiency Levels,	69
Table 43. PTHPs—Coincidence Factors	72
Table 44. PTHPs—Cooling/Heating EFLHs	72
Table 45. PTHPs—RUL of Replaced PTAC [,]	74
Table 46. PTHPs—Revision History	76
Table 47. GSHPs—Baseline Efficiencies	78
Table 48. GSHPs—ENERGY STAR Requirements	78
Table 49. GSHPs—Equivalent Full Load Cooling/Heating Hours	80
Table 50. GSHPs—Coincidence Factors	81
Table 51. GSHPs—Energy Savings for Desuperheaters per Cooling Tonnage	82
Table 52. GSHPs—Summer Peak Demand Savings for Desuperheaters per Cooling Tonnage	l 82
Table 53. GSHPs—Revision History	84
Table 54. Large Capacity AC/HPs—NC/ROB Baseline Efficiency Levels for AC/HPs	86
Table 55. Large Capacity AC/HPs—NC/ROB Baseline Efficiency Levels for GSHPs.	87
Table 56. Large Capacity AC/HPs—Coincidence Factors	89
Table 57. Large Capacity AC/HPs—Equivalent Full Load Cooling/Heating Hours	89
Table 58. Large Capacity AC/HPs—Revision History	91
Table 59. Evaporative Cooling—Deemed Savings per System	94
Table 60. Evaporative Cooling—Revision History	95
Table 61. Connected Thermostats—Baseline Efficiency of Existing ACs	97
Table 62. Connected Thermostats—Baseline Efficiency of Existing HPs	97
Table 63. Connected Thermostats—Runtime Reduction Criteria for ENERGY STAR Certification	99
Table 64. Connected Thermostats—Equivalent Full Load Cooling/Heating Hours	100

Table 65.	Connected Thermostats—Baseline for Various Equipment Replacement Scenarios	100
Table 66.	Connected Thermostats—Energy Savings for Thermostats Installed on Unspecified Existing HVAC (kWh/thermostat)	101
Table 67.	Connected Thermostats—Revision History	104
Table 68.	Smart Thermostat Load Management—Deemed kW Savings per Device	107
Table 69.	Smart Thermostat Load Management—Example Total Program Year Savings Calculation	107
Table 70.	Smart Thermostat Load Management—Revision History	109
Table 71.	Duct Sealing—Leakage Categorization Guide	113
Table 72.	Duct Sealing—Energy Savings V _E per CFM ₂₅ Reduction	115
Table 73.	Duct Sealing—Summer Demand Savings V _S per CFM ₂₅ Reduction	115
Table 74.	Duct Sealing—Winter Demand Savings V _W per CFM ₂₅ Reduction	116
Table 75.	Duct Sealing—Climate Zone 1: Amarillo—Energy Savings (kWh), HTR Alternate Approach	117
Table 76.	Duct Sealing—Climate Zone 2: Dallas—Energy Savings (kWh), HTR Alternate Approach	117
Table 77.	Duct Sealing—Climate Zone 3: Houston—Energy Savings (kWh), HTR Alternate Approach	117
Table 78.	Duct Sealing—Climate Zone 4: Corpus Christi—Energy Savings (kWh), HTR Alternate Approach	117
Table 79.	Duct Sealing—Climate Zone 5: El Paso—Energy Savings (kWh), HTR Alternate Approach	118
Table 80.	Duct Sealing—Climate Zone 1: Amarillo—Summer Peak Demand Savings (kW), HTR Alternate Approach	118
Table 81.	Duct Sealing—Climate Zone 2: Dallas—Summer Peak Demand Savings (kW), HTR Alternate Approach	118
Table 82.	Duct Sealing—Climate Zone 3: Houston—Summer Peak Demand Savings (kW), HTR Alternate Approach	118
Table 83.	Duct Sealing—Climate Zone 4: Corpus Christi—Summer Peak Demand Savings (kW), HTR Alternate Approach	118
Table 84.	Duct Sealing—Climate Zone 5: El Paso—Summer Peak Demand Savings (kW), HTR Alternate Approach	119
Table 85.	Duct Sealing—Climate Zone 1: Amarillo—Winter Peak Demand Savings (kW), HTR Alternate Approach	119
Table 86.	Duct Sealing—Climate Zone 2: Dallas—Winter Peak Demand Savings (kW), HTR Alternate Approach	119
Table 87.	Duct Sealing—Climate Zone 3: Houston—Winter Peak Demand Savings (kW), HTR Alternate Approach	119

Table 88.	Duct Sealing—Climate Zone 4: Corpus Christi—Winter Peak Demand Savings (kW), HTR Alternate Approach	120
Table 89.	Duct Sealing—Climate Zone 5: El Paso—Winter Peak Demand Savings (kW), HTR Alternate Approach	120
Table 90.	Duct Sealing—Climate Zone 1: Amarillo—Energy Savings (kWh), Alternate Approach	120
Table 91.	Duct Sealing—Climate Zone 2: Dallas—Energy Savings (kWh), Alternate Approach	120
Table 92.	Duct Sealing—Climate Zone 3: Houston—Energy Savings (kWh), Alternate Approach	121
Table 93.	Duct Sealing—Climate Zone 4: Corpus Christi—Energy Savings (kWh), Alternate Approach	121
Table 94.	Duct Sealing—Climate Zone 5: El Paso—Energy Savings (kWh), Alternate Approach	121
Table 95.	Duct Sealing—Climate Zone 1: Amarillo—Summer Peak Demand Savings (kW), Alternate Approach	121
Table 96.	Duct Sealing—Climate Zone 2: Dallas—Summer Peak Demand Savings (kW), Alternate Approach	122
Table 97.	Duct Sealing—Climate Zone 3: Houston—Summer Peak Demand Savings (kW), Alternate Approach	122
Table 98.	Duct Sealing—Climate Zone 4: Corpus Christi—Summer Peak Demand Savings (kW), Alternate Approach	122
Table 99.	Duct Sealing—Climate Zone 5: El Paso—Summer Peak Demand Savings (kW), Alternate Approach	122
Table 100). Duct Sealing—Climate Zone 1: Amarillo—Winter Peak Demand Savings (kW), Alternate Approach	122
Table 10 ²	I. Duct Sealing—Climate Zone 2: Dallas—Winter Peak Demand Savings (kW), Alternate Approach	123
Table 102	2. Duct Sealing—Climate Zone 3: Houston—Winter Peak Demand Savings (kW), Alternate Approach	123
Table 103	 B. Duct Sealing—Climate Zone 4: Corpus Christi—Winter Peak Demand Savings (kW), Alternate Approach 	123
Table 104	I. Duct Sealing—Climate Zone 5: El Paso—Winter Peak Demand Savings (kW), Alternate Approach	123
Table 105	5. Duct Sealing—Revision History	126
Table 106	6. Air Infiltration—N Factors	131
Table 107	7. Air Infiltration—Energy Savings V_E per CFM ₅₀ Reduction	133
Table 108	3. Air Infiltration—Peak Summer Demand Savings V _S per CFM ₅₀ Reduction	133
Table 109	9. Air Infiltration—Peak Winter Demand Savings V_W per CFM ₅₀ Reduction	134
Table 110). Air Infiltration—Revision History	136

Table 111. Ceiling Insulation—Prototypical Home Characteristics	140
Table 112. Ceiling Insulation—Climate Zone 1: Amarillo, R-30 Energy Savings (kWh/sg. ft.)	140
Table 113. Ceiling Insulation—Climate Zone 2: Dallas, R-30 Energy Savings (kWh/sq. ft.)	141
Table 114. Ceiling Insulation—Climate Zone 3: Houston, R-30 Energy Savings (kWh/sq. ft.)	141
Table 115. Ceiling Insulation-Climate Zone 4: Corpus Christi, R-30 Energy (kWh/sq. ft.)	141
Table 116. Ceiling Insulation—Climate Zone 5: El Paso, R-30 Energy Savings (kWh/sq. ft.)	141
Table 117. Ceiling Insulation—Energy Scale-Down Factors for Insulating to Less than R-30 (kWh/sq. ft./ΔR)	142
Table 118. Ceiling Insulation—Energy Scale-Up Factors for Insulating to Greater than R-30 (kWh/sq. ft./ΔR)	143
Table 119. Ceiling Insulation—Climate Zone 1: Amarillo, R-30 Summer Peak Demand Savings (kW/sq. ft.)	143
Table 120. Ceiling Insulation—Climate Zone 2: Dallas, R-30 Summer Peak Demand Savings (kW/sq. ft.)	143
Table 121. Ceiling Insulation—Climate Zone 3: Houston, R-30 Summer Peak Demand Savings (kW/sq. ft.)	144
Table 122. Ceiling Insulation—Climate Zone 4: Corpus Christi, R-30 Summer Peak Demand Savings (kW/sq. ft.)	144
Table 123. Ceiling Insulation—Climate Zone 5: El Paso, R-30 Summer Peak Demand Savings (kW/sq. ft)	144
Table 124. Ceiling Insulation—Summer Peak Demand Scale-Down Factors for Insulating to Less than R-30 (kW/sq. ft./ Δ R)	144
Table 125. Ceiling Insulation—Summer Peak Demand Scale-Up Factors for Insulating to Greater than R-30 (kW/sq. ft./ΔR)	145
Table 126. Ceiling Insulation—Climate Zone 1: Amarillo, R-30 Winter Peak Demand Savings (kW/sq. ft.)	145
Table 127. Ceiling Insulation—Climate Zone 2: Dallas, R-30 Winter Peak Demand Savings (kW/sq. ft.)	145
Table 128. Ceiling Insulation—Climate Zone 3: Houston, R-30 Winter Peak Demand Savings (kW/sq. ft.)	146
Table 129. Ceiling Insulation—Climate Zone 4: Corpus Christi, R-30 Winter Peak Demand Savings (kW/sq. ft.)	146
Table 130. Ceiling Insulation—Climate Zone 5: El Paso, R-30 Winter Peak Demand Savings (kW/sq. ft.)	146
Table 131. Ceiling Insulation—Winter Peak Demand Scale-down Factors for Insulating to Less than R-30 (kW/sq. ft./ΔR)	147
Table 132. Ceiling Insulation—Winter Peak Demand Scale-up Factors for Insulating to Greater than R-30(kW/sq. ft./ Δ R)	147
Table 133. Ceiling Insulation—Revision History	150

Table 134. Attic Encapsulation—Prototypical Home Characteristics	154
Table 135. Attic Encapsulation—Climate Zone 1: Amarillo, R-30 Energy Savings for Insulation Component (kWh/sq. ft)	155
Table 136. Attic Encapsulation—Climate Zone 2: Dallas, R-30 Energy Savings for Insulation Component (kWh/sq. ft)	155
Table 137. Attic Encapsulation—Climate Zone 3: Houston, R-30 Energy Savings for Insulation Component (kWh/sq. ft)	r 155
Table 138. Attic Encapsulation—Climate Zone 4: Corpus Christi, R-30 Energy Savir for Insulation Component (kWh/sq. ft)	ngs 156
Table 139. Attic Encapsulation—Climate Zone 5: El Paso, R-30 Energy Savings for Insulation Component (kWh/sq. ft)	156
Table 140. Attic Encapsulation—Energy Scale-down Factors for Insulating to Less than R-30 (kWh/sq. ft./ΔR)	157
Table 141. Attic Encapsulation—Energy Scale-up Factors for Insulating to Greater than R-30 (kWh/sq. ft./ΔR)	157
Table 142. Attic Encapsulation—Climate Zone 1: Amarillo, R-30 Summer Peak Demand Savings for Insulation Component (kW/sq. ft.)	158
Table 143. Attic Encapsulation—Climate Zone 2: Dallas, R-30 Summer Peak Dema Savings for Insulation Component (kW/sq. ft.)	ınd 158
Table 144. Attic Encapsulation—Climate Zone 3: Houston, R-30 Summer Peak Demand Savings for Insulation Component (kW/sq. ft.)	158
Table 145. Attic Encapsulation—Climate Zone 4: Corpus Christi, R-30 Summer Pea Demand Savings for Insulation Component (kW/sq. ft.)	ak 158
Table 146. Attic Encapsulation—Climate Zone 5: El Paso, R-30 Summer PeakDemand Savings for Insulation Component (kW/sq. ft.)	159
Table 147. Attic Encapsulation—Summer Peak Demand Scale-down Factors for Insulating to Less than R-30 (kW/sq. ft./ΔR)	159
Table 148. Attic Encapsulation—Summer Peak Demand Scale-up Factors for Insulating to Greater than R-30 (kW/sq. ft./ΔR)	159
Table 149. Attic Encapsulation—Climate Zone 1: Amarillo, R-30 Winter Peak Dema Savings for Insulation Component (kW/sq. ft.)	nd 160
Table 150. Attic Encapsulation—Climate Zone 2: Dallas, R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)	d 160
Table 151. Attic Encapsulation—Climate Zone 3: Houston, R-30 Winter Peak Dema Savings for Insulation Component (kW/sq. ft.)	and 160
Table 152. Attic Encapsulation—Climate Zone 4: Corpus Christi, R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)	161
Table 153. Attic Encapsulation—Zone 5: El Paso, R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)	161
Table 154. Attic Encapsulation—Winter Peak Demand Scale-down Factors for Insulating to Less than R-30 (kW/sq. ft./ΔR)	162

Table 155. Attic Encapsulation—Winter Peak Demand Scale-cp Factors for Insulating to Greater than R-30 (kW/sq. ft./ΔR)	162
Table 156. Attic Encapsulation—Prototypical Home Characteristics	163
Table 157. Attic Encapsulation—Energy Savings for Infiltration Reduction Component,18 Percent Air Infiltration Reduction (kWh/home)	164
Table 158. Attic Encapsulation—Summer Peak Demand Savings for InfiltrationReduction Component, 18 Percent Air Infiltration Reduction (kW/home)	164
Table 159. Attic Encapsulation—Winter Peak Demand Savings for the Infiltration Reduction Component, 18 Percent Air Infiltration Reduction (kW/home)	165
Table 160. Attic Encapsulation—Revision History	168
Table 161. Wall Insulation—High-Efficiency Condition R-Values for 2x4 and 2x6 Walls	170
Table 162. Wall Insulation—Prototypical Home Characteristics	171
Table 163. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x4 Walls to R- 13	172
Table 164. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x4 Walls to R-21	172
Table 165. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x6 Walls to R-17	173
Table 166. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x6 Walls to R-33	173
Table 167. Wall Insulation—Summer Peak Demand Savings (kW/sq. ft.), Insulation of 2x4 Walls to R-13	174
Table 168. Wall Insulation—Summer Peak Demand Savings, Insulation of 2x4 Walls to R-21 (kW/sq. ft.)	174
Table 169. Wall Insulation—Summer Peak Demand Savings (kW/sq. ft.), Insulation of2x6 Walls to R-17	175
Table 170. Wall Insulation—Summer Peak Demand Savings (kW/sq. ft.), Insulation of2x6 Walls to R-33	176
Table 171. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.), Insulation of2x4 Walls to R-13	177
Table 172. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.), Insulation of2x4 Walls to R-21	177
Table 173. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.), Insulation of2x6 Walls to R-17	178
Table 174. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.), Insulation of2x6 Walls to R-33	178
Table 175. Wall Insulation—Revision History	180
Table 176. Floor Insulation—Prototypical Home Characteristics	184
Table 177. Floor Insulation—Climate Zone 1: Amarillo, Energy Savings (kWh/sq. ft.)	184
Table 178. Floor Insulation—Climate Zone 2: Dallas, Energy Savings (kWh/sq. ft.)	184
Table 179. Floor Insulation—Climate Zone 3: Houston, Energy Savings (kWh/sq. ft.)	185
Table 180. Floor Insulation—Climate Zone 4: Corpus Christi, Energy Savings (kWh/sq. ft.)	185
Table 181. Floor Insulation—Climate Zone 5: El Paso, Energy Savings (kWh/sq. ft.)	185

Table 182. Floor Insulation—Climate Zone 1: Amarillo, Summer Peak Demand Savings (kW/sq. ft.)	
Table 183. Floor Insulation—Climate Zone 2: Dallas, Summer Peak Demand Savings (kW/sq. ft.)	
Table 184. Floor Insulation—Climate Zone 3: Houston, Summer Peak Demand Savings (kW/sq. ft.)	
Table 185. Floor Insulation—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings (kW/sq. ft.)	
Table 186. Floor Insulation—Climate Zone 5: El Paso, Summer Peak Demand Savings (kW/sq. ft.)	
Table 187. Floor Insulation—Climate Zone 1: Amarillo, Winter Peak Demand Savings (kW/sq. ft.)	
Table 188. Floor Insulation—Climate Zone 2: Dallas, Winter Peak Demand Savings (kW/sq. ft.)	
Table 189. Floor Insulation—Climate Zone 3: Houston, Winter Peak Demand Savings (kW/sq. ft.)	187
Table 190. Floor Insulation—Climate Zone 4: Corpus Christi, Winter Peak Demand Savings (kW/sq. ft.)	
Table 191. Floor Insulation—Climate Zone 5: El Paso, Winter Peak Demand Savings (kW/sq. ft.)	
Table 192. Floor Insulation—Revision History	
Table 193. Duct Insulation—Cooling and Heating Adjustment Factors (AF)	191
Table 194. Duct Insulation—Climate Zone 1: Amarillo, Energy Savings (kWh/sq. ft.)	
Table 195. Duct Insulation—Climate Zone 2: Dallas, Energy Savings (kWh/sq. ft.)	
Table 196. Duct Insulation—Climate Zone 3: Houston, Energy Savings (kWh/sq. ft.)	
Table 197. Duct Insulation—Climate Zone 4: Corpus Christi, Energy (kWh/sq. ft.)	
Table 198. Duct Insulation—Climate Zone 5: El Paso, Energy Savings (kWh/sq. ft.)	193
Table 199. Duct Insulation—Climate Zone 1: Amarillo, Summer Peak Demand Savings (kW/sq. ft.)	193
Table 200. Duct Insulation—Climate Zone 2: Dallas, Summer Peak Demand Savings (kW/sq. ft.)	
Table 201. Duct Insulation—Climate Zone 3: Houston, Summer Peak Demand Savings (kW/sq. ft.)	194
Table 202. Duct Insulation—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings (kW/sq. ft.)	194
Table 203. Duct Insulation—Climate Zone 5: El Paso, Summer Peak Demand Savings (kW/sq. ft)	194
Table 204. Duct Insulation—Revision History	195
Table 205. Radiant Barriers—RIMA-I Product Testing Requirements	197
Table 206. Radiant Barriers—Cooling and Heating Adjustment Factors (AF)	

Table 207. Radiant Barriers—Climate Zone 1: Amarillo, Energy Savings (kWh/sq. ft.)	199
Table 208. Radiant Barriers—Climate Zone 2: Dallas, Energy Savings (kWh/sq. ft.)	199
Table 209. Radiant Barriers—Climate Zone 3: Houston, Energy Savings (kWh/sq. ft.)	199
Table 210. Radiant Barriers—Climate Zone 4: Corpus Christi, Energy Savings (kWh/sq. f	t.)200
Table 211. Radiant Barriers—Climate Zone 5: El Paso, Energy Savings (kWh/sq. ft.)	200
Table 212. Radiant Barriers—Summer Peak Demand Savings for Residences with Refrigerated Air (kWh/sq. ft.)	200
Table 213. Radiant Barriers—Revision History	202
Table 214. Cool Roofs—ENERGY STAR Specification	204
Table 215. Cool Roofs—Prototypical Home Characteristics	205
Table 216. Cool Roofs—Climate Zone 1: Amarillo, Energy Savings for ResidentialReflective Roof Installation (kWh/sq. ft.)	206
Table 217. Cool Roofs—Climate Zone 2: Dallas, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)	207
Table 218. Cool Roofs—Climate Zone 3: Houston, Energy Savings for ResidentialReflective Roof Installation (kWh/sq. ft.)	209
Table 219. Cool Roofs—Climate Zone 4: Corpus Christi, Energy Savings forResidential Reflective Roof Installation (kWh/sq. ft.)	210
Table 220. Cool Roofs—Climate Zone 5: El Paso, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)	211
Table 221. Cool Roofs—Climate Zone 1: Amarillo, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)	212
Table 222. Cool Roofs—Climate Zone 2: Dallas, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)	213
Table 223. Cool Roofs—Climate Zone 3: Houston, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)	214
Table 224. Cool Roofs—Climate Zone 4: Corpus Christi, Energy Savings forResidential Reflective Roof Installation (kWh/sq. ft.)	215
Table 225. Cool Roofs—Climate Zone 5: El Paso, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)	215
Table 226. Cool Roofs—Climate Zone 1: Amarillo, Summer Peak DemandSavings for Residential Reflective Roof Installation (kW/sq. ft.)	216
Table 227. Cool Roofs—Climate Zone 2: Dallas, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	217
Table 228. Cool Roofs—Climate Zone 3: Houston, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	218
Table 229. Cool Roofs—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	219
Table 230. Cool Roofs—Climate Zone 5: El Paso, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	219

Table 231. Cool Roofs—Climate Zone 1: Amarillo, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	220
Table 232. Cool Roofs—Climate Zone 2: Dallas, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	221
Table 233. Cool Roofs—Climate Zone 3: Houston, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	221
Table 234. Cool Roofs—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	222
Table 235. Cool Roofs—Climate Zone 5: El Paso, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	222
Table 236. Cool Roofs—Climate Zone 1: Amarillo, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	223
Table 237. Cool Roofs—Climate Zone 2: Dallas, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	224
Table 238. Cool Roofs—Climate Zone 3: Houston, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	225
Table 239. Cool Roofs—Climate Zone 4: Corpus Christi, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	226
Table 240. Cool Roofs—Climate Zone 5: El Paso, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	226
Table 241. Cool Roofs—Climate Zone 1: Amarillo, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	227
Table 242. Cool Roofs—Climate Zone 2: Dallas, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	228
Table 243. Cool Roofs—Climate Zone 3: Houston, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	228
Table 244. Cool Roofs—Climate Zone 4: Corpus Christi, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	229
Table 245. Cool Roofs—Climate Zone 5: El Paso, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)	229
Table 246. Cool Roofs—Revision History	232
Table 247. Solar Screens—Energy Savings (kWh) per Square Foot of Solar Screen	236
Table 248. Solar Screens—Summer Peak Demand Savings (kW) per Square Foot of Solar Screen	236
Table 249. Solar Screens—Winter Peak Demand Savings (kW) per Square Foot of Solar Screen	237
Table 250. Solar Screens—Revision History	238
Table 251. Windows—Baseline Window Specification	240
Table 252. Windows—ENERGY STAR Requirements	240
Table 253. Windows—TRM and ENERGY STAR Climate Zones	241

Table 254. Windows—Energy Savings (kWh/sq. ft.), Single-Pane Baseline	242
Table 255. Windows—Energy Savings (kWh/sq. ft.), Double-Pane Baseline	242
Table 256. Windows—Energy Savings (kWh/sq. ft.), Weighted-Pane Baseline	242
Table 257. Windows-Summer Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline	243
Table 258. Windows-Summer Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline	243
Table 259. Windows—Summer Peak Demand Savings (kW/sq. ft.), Weighted-Pane Baseline	243
Table 260. Windows-Winter Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline	244
Table 261. Windows-Winter Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline	244
Table 262. Windows-Winter Peak Demand Savings (kW/sq. ft.), Weighted-Pane Baseline .	244
Table 263. Windows—Revision History	246
Table 264. Low-E Storm Windows—ENERGY STAR Requirements	249
Table 265. Low-E Storm Windows—Window Assembly Properties	249
Table 266. Low-E Storm Windows—Modeled Building Characteristics	249
Table 267. Low-E Storm Windows-Energy Savings (kWh/sq. ft.), Single-Pane Baseline	250
Table 268. Low-E Storm Windows-Energy Savings (kWh/sq. ft.), Double-Pane Baseline	250
Table 269. Low-E Storm Windows-Energy Savings (kWh/sq. ft.), Weighted-Pane Baseline	.251
Table 270. Low-E Storm Windows—Summer Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline	251
Table 271. Low-E Storm Windows—Summer Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline	251
Table 272. Low-E Storm Window—Summer Peak Demand Savings (kW/sq. ft.), Weighted-Pane Baseline	252
Table 273. Low-E Storm Windows—Winter Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline	252
Table 274. Low-E Storm Windows—Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline	252
Table 275. Low-E Storm Windows—Winter Peak Demand Savings (kW/sq. ft.), Weighted-Pane Baseline	253
Table 276. Low-E Storm Windows—Revision History	254
Table 277. DHW Replacements—Federal Standard for Residential Electric Storage Water Heaters	256
Table 278. DHW Replacements—Efficiency Standards	257
Table 279. DHW Replacements—Water Heater Consumption (Gal/Year)	258
Table 280. DHW Replacements—Water Mains Temperature (°F)	259
Table 281. DHW Replacements—Coincidence Factors	260
Table 282. DHW Replacements—Revision History	263
Table 283. HPWHs—Federal Standard for Residential Water Heaters	265

Table 284. HPWHs—ENERGY STAR Specification	
Table 285. HPWHs—Water Heater Consumption (Gal/Year)	
Table 286. HPWHs—Water Mains Temperature (°F)	
Table 287. HPWHs—Coincidence Factors	
Table 288. HPWHs—Revision History	
Table 289. Solar DHW—Federal Standard for Residential Electric Storage	Water Heaters272
Table 290. Solar DHW—Water Heater Consumption (Gal/Year)	
Table 291. Solar DHW—Water Mains Temperature (°F)	
Table 292. Solar DHW—Coincidence Factors	
Table 293. Solar DHW—Revision History	276
Table 294. DHW Tank Insulation—Estimated Tank Area	
Table 295. DHW Tank Insulation—Ambient Temperature (°F)	
Table 296. DHW Tank Insulation—Energy Savings	
Table 297. DHW Tank Insulation—Energy Savings	
Table 298. DHW Tank Insulation—Energy Savings	
Table 299. DHW Tank Insulation—Revision History	
Table 300. DHW Pipe Insulation—Estimated Pipe Surface Area	
Table 301. DHW Pipe Insulation—Ambient Temperature (°F)	
Table 302. DHW Pipe Insulation—Revision History	
Table 303. Faucet Aerators—Water Mains Temperature (°F)	
Table 304. Faucet Aerators—Coincidence Factors	
Table 305. Faucet Aerators—Revision History	
Table 306. Low-Flow Showerheads—Water Mains Temperature (°F)	
Table 307. Low-Flow Showerheads—Coincidence Factors	
Table 308. Low-Flow Showerheads—Revision History	
Table 309. Showerhead TSRVs—Hot Water Usage Reduction	
Table 310. Showerhead TSRVs—Water Mains Temperature (°F)	
Table 311. Showerhead TSRVs—Coincidence Factors	
Table 312. Showerhead TSRVs—Revision History	
Table 313. Tub Spout/Showerhead TSRVs—Hot Water Usage Reduction	
Table 314. Tub Spout/Showerhead TSRVs—Water Mains Temperature (°F)314
Table 315. Tub Spout/Showerhead TSRVs—Coincidence Factors	
Table 316. Tub Spout/Showerhead TSRVs—Revision History	
Table 317. DHW Temperature Setback—Estimated Tank Area	
Table 318. DHW Temperature Setback—Revision History	

Table 319. Ceiling Fans—Fan Definitions	322
Table 320. Ceiling Fans—Efficiency Requirements	322
Table 321. Ceiling Fans—Light Kit Efficacy Requirements	322
Table 322. Ceiling Fans—Interactive Effects Factor for Cooling Energy Savings and Heating Energy Penalties	324
Table 323. Ceiling Fans— Motor Wattages	324
Table 324. Ceiling Fans—Operating Percentages	325
Table 325. Ceiling Fans—Lighting Coincidence Factors	326
Table 326. Ceiling Fans—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties	326
Table 327. Ceiling Fans—Energy Savings (kWh)	326
Table 328. Ceiling Fans—Summer Peak Demand Savings (kW)	326
Table 329. Ceiling Fans—Winter Peak Demand Savings (kW)	327
Table 330. Ceiling Fans—Revision History	328
Table 331. Clothes Washers—Federal Standard	330
Table 332. Clothes Washers—ENERGY STAR Requirements	330
Table 333. Clothes Washers—ENERGY STAR Characteristics	333
Table 334. Clothes Washers—Coincidence Factors	333
Table 335. Clothes Washers—Energy Savings (kWh)	334
Table 336. Clothes Washers—Summer Peak Demand Savings (kW)	334
Table 337. Clothes Washers—Winter Peak Demand Savings (kW)	335
Table 338. Clothes Washers—Revision History	336
Table 339. Clothes Dryers—Federal Standard	339
Table 340. Clothes Dryers—ENERGY STAR Requirements	339
Table 341. Clothes Dryers—Default Average Load	340
Table 342. Clothes Dryers—Coincidence Factors	341
Table 343. Clothes Dryers—Energy Savings (kWh)	341
Table 344. Clothes Dryers—Summer Peak Demand Savings (kW)	341
Table 345. Clothes Dryers—Winter Peak Demand Savings (kW)	342
Table 346. Clothes Dryers—Revision History	343
Table 347. Dishwashers—Federal Standard	344
Table 348. Dishwashers—ENERGY STAR Requirements	345
Table 349. Dishwashers—Coincidence Factors	347
Table 350. Dishwashers—Energy Savings (kWh)	347
Table 351. Dishwashers—Summer Peak Demand Savings (kW)	347
Table 352. Dishwashers—Winter Peak Demand Savings (kW)	347

Table 353.	Dishwashers—Revision History	.349
Table 354.	Refrigerators—ENERGY STAR Requirements	.351
Table 355.	Refrigerators—Formulas to Calculate the Energy Usage by Product Class	.352
Table 356.	Refrigerators—Coincidence Factors	.353
Table 357.	Refrigerators—RUL of Replaced Unit	.354
Table 358.	Refrigerators—Energy Savings (kWh)	.357
Table 359.	Refrigerators—Replace-on-Burnout – Summer Peak Demand Savings (kW)	.358
Table 360.	Refrigerators—Early Retirement—Summer Peak Demand Savings (kW)	.359
Table 361.	Refrigerators—Replace-on-Burnout—Winter Peak Demand Savings (kW)	.360
Table 362.	Refrigerators—Early Retirement—Winter Peak Demand Savings (kW)	.361
Table 363.	Refrigerators—Revision History	.363
Table 364.	Freezers—ENERGY STAR Requirements	.365
Table 365.	Freezers—Formulas to Calculate the Energy Usage by Product Class	.366
Table 366.	Freezers—Coincidence Factors	.367
Table 367.	Freezers—RUL of Replaced Unit	.368
Table 368.	Freezers—Savings (kWh)	.371
Table 369.	Freezers—Replace-on-Burnout—Summer Peak Demand Savings (kW)	.372
Table 370.	Freezers—Early Retirement—Summer Peak Demand Savings (kW)	.372
Table 371.	Freezers—Replace-on-Burnout—Winter Peak Demand Savings (kW)	.372
Table 372.	Freezers—Early Retirement—Winter Peak Demand Savings (kW)	.373
Table 373.	Freezers—Revision History	.375
Table 374.	Refrigerator/Freezer Recycling—Average Annual Energy Consumption	.377
Table 375.	Refrigerator/Freezer Recycling—Coincidence Factors	.378
Table 376.	Refrigerator/Freezer Recycling—Revision History	.380
Table 377.	Air Purifiers—Federal Standard	.381
Table 378.	Air Purifiers—ENERGY STAR Requirements	.382
Table 379.	Air Purifiers—Coincidence Factors	.384
Table 380.	Air Purifiers—Energy Savings (kWh)	.384
Table 381.	Air Purifiers—Summer Peak Demand Savings (kW)	.384
Table 382.	Air Purifiers—Winter Peak Demand Savings (kW)	.385
Table 383.	Air Purifiers—Revision History	.386
Table 384.	Baseline Condition—Federal Standard Effective July 19, 2021	.388
Table 385.	ENERGY STAR Pool Pumps – Energy Efficiency Level	.389
Table 386.	Pool Pumps—Baseline Assumptions	.391
Table 387.	Pool Pumps—ENERGY STAR Assumptions	.391

Table 388. Pool Pumps—Coincidence Factors 3	92
Table 389. Pool Pumps—Energy Savings (kWh)3	92
Table 390. Pool Pumps—Summer Peak Demand Savings (kW) for Inground Pools	93
Table 391. Pool Pumps—Summer Peak Demand Savings (kW) for Above Ground Pools3	93
Table 392. Pool Pumps—Winter Peak Demand Savings (kW) for Inground Pools	94
Table 393. Pool Pumps—Peak Demand Savings (kW) for Above Ground Pools	394
Table 394. Pool Pumps—Revision History3	96
Table 395. APS—Peripheral Watt Consumption Breakdown	99
Table 396. APS—In-Service Rates by Program Type 4	02
Table 397. APS—Coincidence Factors4	02
Table 398. APS—Tier 1 Unadjusted Savings Before Applying ISR	04
Table 399. APS—Tier 2 Unadjusted Savings Before Applying ISR	04
Table 400. APS—Revision History4	06
Table 401. EVSE—Coincidence Factors4	80
Table 402. EVSE—Energy Savings (kWh)4	09
Table 403. EVSE—Summer/Winter Peak Demand Savings (kW)4	09
Table 404. EVSE—Revision History4	10
Table 405. Induction Cooking—Baseline Electric Resistance Cooktop Energy Consumption4	12
Table 406. Induction Cooking—Coincidence Factors 4	13
Table 407. Induction Cooking—Energy Savings (kWh)4	14
Table 408. Induction Cooking—Summer Peak Demand Savings (kW)4	14
Table 409. Induction Cooking—Winter Peak Demand Savings (kW)4	14
Table 410. Induction Cooking—Revision History4	16

Acknowledgments

The Texas Technical Reference Manual is maintained by the Public Utility Commission of Texas' independent evaluation, measurement, and verification (EM&V) team led by Tetra Tech. This version of the Texas Technical Reference Manual was primarily developed from program documentation and measure savings calculators used by the Texas Electric Utilities and their Energy Efficiency Services Providers (EESPs) to support their energy efficiency efforts, and original source material from petitions filed with the Public Utility Commission of Texas by the utilities, their consultants and EESPs such as Frontier Energy (TXu 1-904-705), ICF, CLEAResult, and Nexant. Portions of the Technical Reference Manual are copyrighted 2001-2017 by the Electric Utility Marketing Managers of Texas (EUMMOT), while other portions are copyrighted 2001-2018 by Frontier Energy. Certain technical content and updates were added by the EM&V team to provide further explanation and direction as well as a consistent structure and level of information.

TRM Technical Support

Technical support and questions can be emailed to the EM&V project manager, Lark.Lee@tetratech.com, and the PUCT, Therese.Harris@puc.texas.gov.

1 INTRODUCTION

This volume of the TRM contains the deemed savings for residential measures that have been approved for use in Texas by the Public Utility Commission of Texas (PUCT). This volume includes instructions regarding various savings calculators and reference sources of the information. The TRM serves as a centralized source of deemed savings values. Where appropriate, measurement and verification (M&V) methods by measure category are noted for informational purposes only regarding the basis of projected and claimed savings.

Table 1 provides an overview of the residential measures contained within this program year (PY) 2024 TRM 11.0 Volume 2 and the types of deemed savings estimates available for each one. There are five types of deemed savings estimates identified:

- *Point estimates* that provided a single deemed savings value correspond to a single measure or type of technology.
- Deemed saving tables that provide energy and peak savings as a function of size, capacity, building type, efficiency level, or other inputs.
- Savings algorithms that require specified primary inputs that must be gathered on site and the identification of default inputs where primary data could not be collected. In many cases, these algorithms are provided as references to deemed savings tables, point estimates, or calculator explanations.
- *Calculators* are used by different utilities and implementers to calculate energy savings for different measures. In many cases, there are several different calculators available for a single measure. Sometimes their background calculators are similar, and in other cases, estimates can vary greatly between each calculator.
- M&V methods are also used for some measures to calculate savings in the event that standard equipment is not used, or the specified building types do not apply. For some of these measures, both a simplified M&V approach and a full M&V approach may be allowed by the utility. M&V methods as a source of claimed and projected savings are noted for informational purposes only.

Please consult Volume 1: Overview and User Guide, Section 5: Structure and Content, for details on the organization of the measure templates presented in this volume.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	11.0 update
Lighting	ENERGY STAR [®] general service LED lamps	-	_	Х	_	-	Added in-service rates by program type and clarification of lamp types.

Table 1. Residential Deemed Savings by Measure Category

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	11.0 update
	ENERGY STAR [®] specialty and directional LED lamps	-	_	Х	_	_	Added in-service rates by program type.
	LED nightlights	_	-	Х	_	-	Added in-service rates by program type.
HVAC	Air conditioner or heat pump tune-up	_	-	Х	_	_	Updated demand savings. Clarified eligibility for PTACs and PTHPs.
	Central heat pumps without SEER2 ratings	_	Х	-	_	_	Measure and Appendix A retired.
	Mini-split heat pumps without SEER2 ratings	_	Х	-	_	_	Measure and Appendix B retired.
	Central mini-split air conditioners and heat pumps with SEER2 ratings	_	_	Х	_	_	Defined rightsizing and documentation requirements. Updated early retirement age eligibility.
	Room air conditioners	_	_	Х	_	_	Incorporated updated DOE final rule and ENERGY STAR specification v5.0. Updated early retirement age eligibility.
	Packed terminal heat pumps	_	_	Х	_	-	Updated early retirement age eligibility.
	Ground source heat pumps	_	Х	Х	_	_	Integrated federal standard change and SEER2 test procedure.
	Large capacity split system and single- package air conditioners and heat pumps		_	Х	_	-	Updated GSHP EUL.
	Evaporative cooling	_	Х	_	_	_	No revision.
	ENERGY STAR [®] connected thermostats	_	Х	-	-	_	Incorporated algorithm approach. Incorporated new SEER2 test procedure.
	Smart thermostat load management	_	Х	-	_	-	No revision.
	Duct sealing	_	_	Х	_	Х	No revision.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	11.0 update
Building envelope	Air infiltration	_	Х	-	_	Х	Added electric resistance documentation adjustment factor.
	Ceiling insulation	_	Х	-	_	_	Added electric resistance documentation adjustment factor.
	Attic encapsulation	-	Х	_	_	_	Added electric resistance documentation adjustment factor.
	Wall insulation	_	Х	-	_	_	Added electric resistance documentation adjustment factor.
	Floor insulation	_	Х	_	_	_	Added electric resistance documentation adjustment factor.
	Duct insulation	_	Х	_	_	_	Measure origin.
	Radiant barriers	_	Х	_	_	_	Clarified savings normalization by area. Added electric resistance documentation adjustment factor.
	Cool roofs	_	Х	_	_	_	No revision.
	Solar screens	_	Х	—	_	_	No revision.
	ENERGY STAR [®] windows	-	Х	_	_	_	Updated ENERGY STAR specification. Added electric resistance documentation adjustment factor.
	ENERGY STAR [®] low-e storm windows		Х	-	_	_	Added electric resistance documentation adjustment factor.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	11.0 update
Domestic water heating	Water heater installation— electric tankless and fuel substitution	_	_	Х	_	_	Removed requirement to install HPWH for DHW > 55 gallons. Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.
	Heat pump water heaters	_	Х	_	_	_	Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.
	Solar water heaters	_	Х	_	_	_	Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.
	Water heater tank insulation	_	Х	_	_	_	Clarified baseline and added deemed savings. Updated documentation requirements.
	Water heater pipe insulation	-	_	Х	_	_	No revision.
	Faucet aerators	_	_	Х	_	_	No revision.
	Low-flow showerheads	_	_	Х	_	_	No revision.
	Showerhead temperature sensitive restrictor valves	_	_	Х	_	_	No revision.
	Tub spout and showerhead temperature- sensitive restrictor valves	-	-	Х	-	-	No revision.
	Water heater temperature setback	_	-	Х	_	_	No revision.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	11.0 update
Appliances	ENERGY STAR [®] ceiling fans	-	-	Х	-	-	No revision.
	ENERGY STAR [®] clothes washers	-	Х	_	_	_	No revision.
	ENERGY STAR [®] clothes dryers	-	Х	-	_	_	No revision.
	ENERGY STAR [®] dishwashers	-	Х	-	_	_	No revision.
	ENERGY STAR [®] refrigerators	-	_	Х	_	Х	Updated early retirement age eligibility.
	ENERGY STAR [®] freezers	_	Х	_	-	_	Updated early retirement age eligibility.
	Refrigerator/ freezer recycling	Х	_	Х	_	_	No revision.
	ENERGY STAR [®] air purifiers	-	Х	_	_	_	Updated baseline to Tier 1 federal standard.
	ENERGY STAR [®] pool pumps	_	_	Х	_	_	Updated baseline to current federal standard. Added new savings tiers. Updated documentation requirements.
	Advanced power strips	-	Х	-	_	_	Added in-service rates.
	ENERGY STAR [®] electric vehicle supply equipment	-	Х	-	_	_	Updated algorithm with days coefficient. Updated documentation requirements.
	Induction cooking	_	Х	_	_	_	Updated documentation requirements.

2 RESIDENTIAL MEASURES

2.1 RESIDENTIAL: LIGHTING

2.1.1 ENERGY STAR[®] General Service LED Lamps Measure Overview

TRM Measure ID: R-LT-GS Market Sector: Residential Measure Category: Lighting Applicable Building Types: Single-family, multifamily; manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive and direct install Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure provides a method for calculating savings for the replacement of a standardefficiency lamp with an ENERGY STAR-compliant LED general service lamp (GSL) in a residential application.¹ This measure applies to all lamps not included in the subsequent measure for Specialty LED Lamps. All lamp types not defined in the Specialty LED Lamps measure should be treated as GSLs.

Eligibility Criteria

These savings values rely on usage patterns specific to both indoor and outdoor applications. In lieu of collecting lamp location, a default weighting of 90.5 percent indoor and 9.5 percent outdoor may be assumed.²

New homes must exceed the lighting equipment requirements of the current state building code (IECC 2015) to be eligible for prescriptive lighting savings.

Fixtures with integrated LEDs may be eligible under this measure using a modified baseline.

¹ DOE Final Rule: Definitions for General Service Lamps. <u>https://www.regulations.gov/document/EERE-</u> 2021-BT-STD-0012-0022.

² 2015 US Lighting Market Characterization, Department of Energy. November 2017. Table 4.11. <u>https://www.energy.gov/sites/prod/files/2017/12/f46/lmc2015_nov17.pdf</u>.

Baseline Condition

On May 8, 2022, the Department of Energy (DOE) issued two final rules relating to GSLs:

- Energy Conservation Program: Definitions for General Service Lamps, effective July 8, 2022, which expanded the definition of GSLs.³
- Energy Conservation Program: Energy Conservation Standards for General Service Lamps, effective July 25, 2022, which shifted the baseline to 45 lumens/watt efficacy.⁴

The baseline is assumed to be the second-tier Energy Independence and Security Act of 2007 (EISA)-mandated efficiency for a GSL. The EISA regulations dictate that GSLs must comply with a 45 lumen/watt efficacy standard at time of sale beginning January 1, 2023. However, due to the DOE enforcement schedule, savings may be claimed against the first-tier EISA baseline through February 28, 2023, at the utility's discretion.

For low-income and hard-to-reach direct install programs, utilities may claim additional savings for early retirement of incandescent and halogen lamps with LEDs when documentation requirements are met. It is assumed that the remaining useful life (RUL) of the existing lamps is two years. This is when the incandescent or halogen lamp baseline bulbs will be at the end of their useful life and need to be replaced. First year savings are weighted using the dual baseline methodology for the first-tier and second-tier baselines found in Table 2 and Table 3. The first-tier baseline may only be used in this scenario.

New construction applications use the same baselines; however, savings can only be claimed for efficient lighting installed above the minimum amount required by code. Current code dictates 75 percent high-efficacy lighting. Therefore, if 100 percent of installed lighting is high-efficacy, savings can be claimed for the remaining 25 percent of installed lamps.

Due to the variability among fixture types compared to screw-in lamps, qualified fixtures with integrated LEDs should use the rated installed wattage and equivalent wattage, or other approved custom methodology, in lieu of the deemed values outlined in Table 2 and Table 3. These wattages are available on the ENERGY STAR certificate and can be used in combination with the deemed savings methodologies provided in this measure.

³ DOE Final Rule: Definitions for General Service Lamps. <u>https://www.regulations.gov/document/EERE-2021-BT-STD-0012-0022</u>.

⁴ DOE Final Rule: Energy Conservation Standards for General Service Lamps. <u>https://www.regulations.gov/document/EERE-2021-BT-STD-0005-0070</u>.

Minimum lumens	Maximum lumens	Incandescent equivalent wattage	1 st tier EISA 2007 (W _{Base}) ⁷	2 nd tier EISA 2007 (W _{Base}) ⁸	Default W _{Post} (if unknown) ⁹
250	309	25	Exempt	Exempt	3.5
310	749	40	29	12	5.5
750	1,049	60	43	20	9.0
1,050	1,489	75	53	28	11.5
1,490	2,600	100	72	45	15.0
2,601	3,300	150	Exempt	66	22.5

Table 2. GSL LEDs—Baseline and Default Wattages for A-Shaped Lamps^{5,6}

Table 3. GSL LEDs—Baseline and Default Wattages for Other Lamp Shapes^{10,11}

Minimum Iumens	Maximum Iumens	Incandescent equivalent wattage ¹²	1 st tier EISA 2007 (W _{Base}) ¹³	2 nd tier EISA 2007 (W _{Base}) ¹⁴	W _{Post} (if unknown) ¹⁵
250	309	Qualified Products List (QPL)	Exempt	Exempt	QPL
310	749	-	29	12	
750	1,049	_	43	20	
1,050	1,489	_	53	28	
1,490	2,600	_	72	45	
2,601	3,300	QPL	Exempt	66	

⁵ Federal standard for General Service Incandescent Lamps (GSIL): <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=20</u>.

⁶ If exempt, refer to the incandescent equivalent wattage.

⁷ 1st tier baseline is only applicable to low-income and hard-to-reach direct install programs. This baseline is only applicable for two years, equivalent to the expected life of an incandescent lamp.

⁸ Non-exempt baseline wattages are calculated by dividing the midpoint of the specified lumen range by the 45 lumens/watt efficacy standard.

⁹ Average rated wattage from the ENERGY STAR QPL rounded to nearest half-watt: <u>https://www.energystar.gov/productfinder/product/certified-light-bulbs/results</u>.

¹⁰ Federal standard for General Service Incandescent Lamps (GSIL): <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=20</u>.

¹¹ If exempt, refer to incandescent equivalent wattage.

¹² Due to large variation in lamp types, use rated value from the ENERGY STAR QPL: <u>https://www.energystar.gov/productfinder/product/certified-light-bulbs/results</u>.

¹³ 1st tier baseline is only applicable to low-income and hard-to-reach direct install programs. This baseline is only applicable for two years, equivalent to the expected life of an incandescent lamp.

¹⁴ Non-exempt baseline wattages are calculated by dividing the midpoint of the specified lumen range by the 45 lumens/watt efficacy standard.

¹⁵ Due to large variation in lamp types, use rated value from ENERGY STAR: <u>https://www.energystar.gov/productfinder/product/certified-light-bulbs/results</u>.

High-Efficiency Condition

The high-efficiency condition is the wattage of the replacement lamp. LEDs must be ENERGY STAR-compliant¹⁶ for the relevant lamp shape being installed as outlined in the latest ENERGY STAR specification.¹⁷ Alternatively, lab testing reports (e.g., LM-79, LM-80, TM-21, ISTMT) are also accepted as a method of certification.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Wattage reduction is defined as the difference between the wattage of a standard baseline lamp, according to EISA 2007 (see Table 2 and Table 3) and the wattage of a comparable GSL LED. An LED is considered comparable to the baseline lamp if they are aligned on the lumen output ranges set out in EISA 2007.

For new construction projects, programs should calculate savings using the methodology in this section for all efficient lamps installed in the home. The program should claim savings for the percentage of installed high-efficacy lamps that exceed the minimum required by code, which is currently 75 percent of lamps. For example, if a new home is built with high-efficacy lamps in 85 percent of the permanently installed fixtures, the program would claim 10 percent of the total calculated savings.

Energy Savings

Annual energy (kWh) savings are calculated as follows.

Energy Savings
$$[\Delta kWh] = \frac{(W_{base} - W_{post})}{1,000} \times Hours \times ISR \times IEF_E$$

Equation 1

Where:

W _{base}	=	Baseline wattage corresponding with the lumen output of the
		purchased LED lamp for the year purchased/installed; reduced baselines are provided for EISA-compliant lamps in Table 2
W _{post}	=	Actual wattage of LED purchased/installed (if unknown, use default wattages from Table 2)

 ¹⁶ ENERGY STAR QPL: <u>https://www.energystar.gov/productfinder/product/certified-light-bulbs/results</u>.
 ¹⁷ http://www.energystar.gov/products/certified-products/detail/light-bulbs.

HOU	=	Average hours of use per year = 803 hours (for interior/exterior applications calculated based on an average daily usage of 2.2 hours per day ¹⁸)
IEF _E	=	Interactive effects factor to account for cooling energy savings and heating energy penalties associated with lighting power reductions (see Table 4)
ISR	=	In-service rate, the percentage of incentivized units that are installed and in use (rather than removed, stored, or burnout) to account for units incentivized but not operating (see Table 5)
1,000	=	Constant to convert from W to kW

Table 4. GSL LEDs—Interactive Effects for Cooling Energy Savings and Heating Energy Penalties¹⁹

IEFE							
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso		
Gas heat with AC	1.06	1.13	1.17	1.15	1.12		
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00		
Heat pump	0.91	1.00	1.05	1.11	0.97		
Electric resistance heat with AC	0.65	0.80	0.90	1.00	0.75		
Electric resistance heat with no AC	0.57	0.69	0.76	0.83	0.65		
No heat with AC	1.06	1.13	1.17	1.15	1.12		
Unconditioned space	1.00	1.00	1.00	1.00	1.00		
Heating/cooling unknown ²⁰	0.88	0.98	1.04	1.07	0.95		

* IEF for homes with no AC is most appropriate for customers with evaporative cooling or room air conditioners.

¹⁸ The average daily usage of 2.2 hours per day is a blended value for indoor and outdoor lamps. Source: Evaluation of 2008 Texas 'Make Your Mark' Statewide CFL Program Report. Frontier Energy. June 2009.

¹⁹ Extracted from BEopt energy models used to estimate savings for envelope measures. Referencing the EISA baseline table, the typical lumen output was determined by taking the midpoint for the 60-watt equivalent lamp (900 lumens), which was assumed to be the most typical installation. The resulting lumens were divided by the default wattage for incandescents (43 W), CFLs (13 W), and LEDs (10 W) resulting in an assumed efficacy for incandescents (21 Im/W), CFLs (70 Im/W), and LEDs (90 Im/W). IEF values were calculated using the following formula: 1 + HVAC_{savings}/Lighting_{savings}.

²⁰ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Program type	ISR
Low-income community kits ²¹	0.88
All other kit programs ²²	0.60
Retail (time of sale)23	0.76
Midstream/upstream	
Direct install ²⁴	0.97

Table 5. GSL LEDs—In-Service Rates by Program Type

Demand Savings

Summer and winter demand savings are determined by applying a coincidence factor associated with each season.

Summer Peak Demand Savings
$$[\Delta kW] = \frac{(W_{base} - W_{post})}{1,000} \times CF_S \times ISR \times IEF_{D,S}$$

Equation 2

Winter Peak Demand Savings
$$[\Delta kW] = \frac{(W_{base} - W_{post})}{1,000} \times CF_W \times ISR \times IEF_{D,W}$$

Equation 3

Where:

CF _{S/W}	=	Seasonal peak coincidence factor (see Table 6)
IEF _D	=	Interactive effects factor to account for cooling demand savings or heating demand penalties associated with lighting power reductions (see Table 7)

²¹ Kits targeting low-income qualified communities. From Illinois TRM v10, based on 2018 Ameren Illinois income-qualified participant survey. Representative of first-year installations.

²² From Illinois TRM v10 based on evaluation of ComEd PY9 Elementary Energy Education program. Representative of first-year installations.

²³ From Illinois TRM v10 based on evaluations of ComEd PY8, PY9, and CY2018 and Ameren PY8 programs. Representative of first-year installations.

²⁴ Dimetrosky, S., Parkinson, K. and Lieb, N. "Residential Lighting Evaluation Protocol – The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." January 2015. ISR for upstream programs, including storage lamps installed within four years of purchase. <u>http://energy.gov/sites/prod/files/2015/02/f19/UMPChapter21-residential-lighting-evaluationprotocol.pdf</u>.

Table 6. GSL LEDs—Coincidence Factors²⁵

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.060	0.053	0.063	0.059	0.032
Winter	0.275	0.232	0.199	0.263	0.358

Table 7. GSL LEDs—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties²⁶

IEF _{D,S}							
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso		
Gas heat with AC	1.45	1.33	1.68	1.23	1.44		
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00		
Heat pump	1.45	1.33	1.68	1.23	1.44		
Electric resistance heat with AC	1.45	1.33	1.68	1.23	1.44		
Electric resistance heat with no AC	1.00	1.00	1.00	1.00	1.00		
No heat with AC	1.45	1.33	1.68	1.23	1.44		
Unconditioned space	1.00	1.00	1.00	1.00	1.00		
Heating/cooling unknown ²⁷	1.39	1.28	1.58	1.20	1.38		

IEF _{D,W}						
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4 Corpus Christi	Climate Zone 5 El Paso	
Gas heat with AC	0.98	0.98	0.98	0.98	0.98	
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00	
Heat pump	0.71	0.67	0.65	0.74	0.81	
Electric resistance heat with AC	0.44	0.36	0.38	0.42	0.52	
Electric resistance heat with no AC	0.44	0.36	0.38	0.42	0.52	
No heat with AC	0.98	0.98	0.98	0.98	0.98	
Unconditioned space	1.00	1.00	1.00	1.00	1.00	
Heating/cooling unknown ²⁸	0.76	0.72	0.73	0.75	0.80	

* IEF for homes with no AC is most appropriate for customers with evaporative cooling or room air conditioners.

²⁵ See Volume 1.

²⁶ Refer to Table 4.

²⁷ Ibid.

²⁸ Ibid.

Low-Income and Hard-to-Reach Direct Install Programs

Annual energy (kilowatt-hours, kWh) and peak demand (kilowatts, kW) may be calculated separately for two time periods:

- The estimated remaining life of the equipment that is being removed (incandescent or halogen lamp), designated the remaining useful life (RUL), and
- The remaining time in the EUL period (EUL RUL).

Annual energy and peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

Where:

RUL	=	Remaining useful life = 2 years
EUL	=	Estimated useful life = 16 or 20 years (see Measure Life and
		Lifetime Savings section)

Upstream/Midstream Program Assumptions

All GSLs with an equivalent wattage of 100 W or lower distributed though upstream or midstream programs should calculate savings using a combination of residential and non-residential savings methodologies with 95 percent of savings allocated to the residential sector and the remaining five percent of savings allocated to the commercial sector.²⁹ While only summer demand savings are specified for the commercial sector, winter demand savings are allowed for the portion of savings allocated to the residential sector.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

²⁹ Weighting assumptions based on statewide evaluator review of LED purchasing behavior for similar program designs as referenced in the 2018 EM&V Upstream Lighting memo.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

Historically, the average measure life is based upon the rated lamp life of the LED. The measure life assumes an average use of 2.2 hours per day based on blended usage for indoor/outdoor applications and applies a 0.85 degradation factor to indoor/outdoor LEDs.

$$EUL_{Total} = \frac{Rated \ Life \times DF}{HOU \times 365.25}$$

Equation 4

Where:

Rated Life	=	10,000 hours, 12,000 hours, 15,000 hours, or 20,000 hours, as specified by the manufacture; if unknown, assume a 10,000-hour lifetime ³⁰
DF	=	0.85 degradation factor ³¹
HOU	=	2.2 hours per day ³²

Table 8. GSL LEDs—Estimated Useful Life

Range of rated measure life (hours)	Assumed rated measure life (hours)	Rated product lifetime (years)
<u><</u> 17,500	15,000	16
> 17,500	20,000	20*

* Measure life capped at 20 years. EUL may be deemed at 16 years in lieu of documenting the customer baseline.

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2.1%20Final%20Sp ecification.pdf.

³⁰ Minimum lifetime requirement under ENERGY STAR Lamps Specification V2.1, effective January 2, 2017.

³¹ ENERGY STAR CFL Third Party Testing and Verification Off-the-Shelf CFL Performance: Batch 3. Figure 27, p. 47.

³² The average daily usage of 2.2 hours per day is a blended value for indoor and outdoor lamps. Source: Evaluation of 2008 Texas 'Make Your Mark' Statewide CFL Program Report. Frontier Energy. June 2009.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Program delivery type (low-income targeted kits, non-low-income targeted kits, retail, direct install)
- Number of LEDs installed
- Wattage of each replacement LED
- Lumen output of each replacement LED
- Manufacturer-rated lifetime of each replacement LED in hours
- Heating system type (gas, electric resistance, heat pump, none, unknown)
- Cooling system type (air conditioner, evaporative, none, unknown)
- Location of replacement lamp (conditioned, unconditioned, or outdoor); only required when not assuming default weighting
- Proof of purchase with date of purchase and quantity
 - Alternative: representative photos of replacement units or another preapproved method of installation verification
- ENERGY STAR certificate matching replacement model number
 - Alternative: another pre-approved method of certification (e.g., LM-79, LM-80, TM-21 ISTMT lap reports)
- For low-income and hard-to-reach direct install programs, photo documentation clearly showing the lamp type and approximate quantity replaced or other preapproved method of verification
- For new construction projects only, these data points must be gathered for all permanently installed fixtures in the home to document the percentage that are high-efficacy.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.
Document Revision History

TRM version	Date	Description of change	
v3.0	4/10/2015	TRM v3.0 origin.	
v3.1	11/05/2015	TRM v3.1 update. Modification of in-service rate, revision of interactive effects factors to reflect indoor-specific values for additional heating and cooling equipment types. Provided defaul input assumptions for upstream lighting programs. Capped estimated measure life.	
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter coincidence factors.	
v4.0	10/10/2016	TRM v4.0 update. Updated IEF values and useful life estimates.	
v5.0	10/2017	TRM v5.0 update. Updated EUL algorithm to account for baseline change beginning in 2021. Included language to deem EUL.	
v6.0	11/2018	TRM v6.0 update. Updated useful life estimates. Updated interactive effects factors.	
v7.0	10/2019	TRM v7.0 update. Removed dual baseline and updated useful life estimates. Added invoice and certificate requirements. Added option for new construction savings.	
v8.0	10/2020	TRM v8.0 update. Defined midstream methodology and clarified default wattages by lumen range.	
v9.0	10/2021	TRM v9.0 update. Updated midstream methodology and added path for fixtures.	
v10.0	10/2022	TRM v10.0 update. Updated for compliance with new DOE GSL definition and reinstatement of EISA 45 lumens/watt backstop.	
v11.0	10/2023	TRM v11.0 update. Added in-service rates by program type.	

Table 9. GSL LEDs—Revision History

2.1.2 ENERGY STAR[®] Specialty LED Lamps Measure Overview

TRM Measure ID: R-LT-SP Market Sector: Residential Measure Category: Lighting Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive and direct install Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure provides a method for calculating savings for replacement of an incandescent or halogen reflector or decorative lamp with an ENERGY STAR-compliant LED specialty lamp in a residential application. These lamps are limited to the following lamp types, defined by the current federal standard³³ and further reduced to only include lamps that are common to utility rebate programs.

- G-shape lamps that have a first number symbol less than or equal to 12.5 (diameter less than or equal to 1.5625 inches)
- G-shape lamps with a diameter of five inches or more
- MR-shape lamps that have a first symbol equal to 16 (diameter equal to two inches) and have a lumen output greater than or equal to 800 lumens
- Reflector lamps that have a first number symbol less than 16 (diameter less than two inches) and that do not have E26/E24, E26d, E26/50x39, E26/53x39, E29/28, E29/53x39, E39, E39d, EP39, or EX39 bases

Eligibility Criteria

These savings values rely on usage patterns specific to both indoor and outdoor applications. In lieu of collecting lamp location, a default weighting of 90.5 percent indoor and 9.5 percent outdoor may be assumed.³⁴

New homes must exceed the lighting equipment requirements of the current state building code (IECC 2015) to be eligible for prescriptive lighting savings.

³³ DOE Final Rule: Definitions for General Service Lamps. <u>https://www.regulations.gov/document/EERE-2021-BT-STD-0012-0022</u>.

³⁴ 2015 US Lighting Market Characterization, Department of Energy. November 2017. Table 4.11. <u>https://www.energy.gov/sites/prod/files/2017/12/f46/lmc2015_nov17.pdf</u>.

Fixtures with integrated LEDs may be eligible under this measure using a modified baseline.

Baseline Condition

On May 8, 2022, the Department of Energy (DOE) issued two final rules relating to general service lamps:

- Energy Conservation Program: Definitions for General Service Lamps (GSL), effective July 8, 2022, which expanded the definition of general service lamp.³⁵
- Energy Conservation Program: Energy Conservation Standards for General Service Lamps, effective July 25, 2022, which shifted the baseline to 45 lumens per watt efficacy.³⁶

For all products not defined as GSLs, the baseline is assumed to be the incandescent equivalent wattage. The baseline wattage will be determined based on the bulb shape of the installed lamp, as outlined below. New construction applications use the same baselines. However, savings can only be claimed for efficient lighting installed above the minimum amount required by code. Current code dictates 75 percent high-efficacy lighting. Therefore, if 100 percent of installed lighting is high-efficacy, savings can be claimed for the remaining 25 percent of installed lamps.

Due to the variability among fixture types compared to screw-in lamps, qualified fixtures with integrated LEDs should use the rated installed wattage and equivalent wattage, or other approved custom methodology, in lieu of the deemed values outlined in this section. These wattages are available on the ENERGY STAR certificate and can be used in combination with the deemed savings methodologies provided in this measure.

Lamp type ³⁸	Minimum Iumens	Maximum Iumens	W _{Base}
G-shape with diameter \geq 5 in. ³⁹	_	_	Qualified Products List (QPL)
MR16/MRX16	800	_	75
R14	250	299	25

Table 10. Specialty LEDs—Baseline and Default Wattages³⁷

³⁵ DOE Final Rule: Definitions for General Service Lamps. <u>https://www.regulations.gov/document/EERE-</u> 2021-BT-STD-0012-0022.

³⁶ DOE Final Rule: Energy Conservation Standards for General Service Lamps. https://www.regulations.gov/document/EERE-2021-BT-STD-0005-0070.

³⁷ Due to large variation in lamp types, use rated value from ENERGY STAR QPL where not specified: <u>https://www.energystar.gov/productfinder/product/certified-light-bulbs/results</u>.

³⁸ Lamp types excluded from this table were not included on the ENERGY STAR QPL. For missing lamp types, refer to the equivalent and rated wattages from the ENERGY STAR certification.

³⁹ G-shape lamps are not included because there were very few ENERGY STAR-qualified products with a diameter of 5 inches or more. For these products, use the equivalent and rated wattages from the ENERGY STAR certification.

High-Efficiency Condition

The high-efficiency condition is the wattage of the replacement lamp. LEDs must be ENERGY STAR-compliant⁴⁰ for the relevant lamp shape being removed as outlined in the latest ENERGY STAR specification.⁴¹ Alternatively, lab testing reports (e.g., LM-79, LM-80, TM-21, ISTMT) are also accepted as a method of certification.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Wattage reduction is defined as the difference between the wattage of a specialty baseline lamp and the wattage of a directional or specialty LED.

For new construction projects, programs should calculate savings using the methodology in this section for all efficient lamps installed in the home. The program should claim savings for the percentage of installed high-efficacy lamps that exceed the minimum required by code, which is currently 75 percent of lamps. For example, if a new home is built with high-efficacy lamps in 85 percent of the permanently installed fixtures, the program would claim 10 percent of the total calculated savings.

Energy Savings Algorithms

Annual energy (kWh) savings are calculated as follows:

Energy Savings
$$[\Delta kWh] = \frac{(W_{base} - W_{post})}{1,000} \times HOU \times ISR \times IEF_E$$

Equation 5

Where:

Wbase	=	EISA-exempt specialty lamp or a DOE-ruling-exempt reflector (see Table 10)
W _{post}	=	Actual wattage of LED purchased/installed
HOU	=	Average hours of use per year = 803 hours (for interior/exterior applications calculated based on an average daily usage of 2.2 hours per day ⁴²)

⁴⁰ ENERGY STAR QPL: <u>https://www.energystar.gov/productfinder/product/certified-light-bulbs/results</u>.

⁴¹ ENERGY STAR specification: http://www.energystar.gov/products/certified-products/detail/light-bulbs.

⁴² The average daily usage of 2.2 hours per day is a blended value for indoor and outdoor lamps. Source: Evaluation of 2008 Texas 'Make Your Mark' Statewide CFL Program Report. Frontier Energy (formerly Associates). June 2009.

IEFe	=	Interactive effects factor to account for cooling energy savings and heating energy penalties associated with lighting power reductions (see Table 11)
ISR	=	In-service rate, the percentage of incentivized units that are installed and in use (rather than removed, stored, or burnt out) to account for units incentivized but not operating (see Table 12)
1,000	=	Constant to convert from W to kW

	IEFE				
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Gas heat with AC	1.06	1.13	1.17	1.15	1.12
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00
Heat pump	0.91	1.00	1.05	1.11	0.97
Electric resistance heat with AC	0.65	0.80	0.90	1.00	0.75
Electric resistance heat with no AC	0.57	0.69	0.76	0.83	0.65
No heat with AC	1.06	1.13	1.17	1.15	1.12
Unconditioned space	1.00	1.00	1.00	1.00	1.00
Heating/cooling unknown44	0.88	0.98	1.04	1.07	0.95

Table 11. Specialty LEDs—Interactive Effects for Cooling Energy Savings and Heating Energy Penalties⁴³

* IEF for homes with no AC is most appropriate for customers with evaporative cooling or room air conditioners.

⁴³ Extracted from BEopt energy models used to estimate savings for envelope measures. Referencing the EISA baseline table, the typical lumen output was determined by taking the midpoint for the 60-watt equivalent lamp (900 lm), which was assumed to be the most typical installation. The resulting lumens were divided by the default wattage for incandescents (43 W), CFLs (13 W), and LEDs (10 W) resulting in an assumed efficacy for incandescents (21 lm/W), CFLs (70 lm/W), and LEDs (90 lm/W). IEF values were calculated using the following formula: 1 + HVAC_{savings}/Lighting_{savings}.

⁴⁴ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Program type	ISR
Low-income community kits45	0.88
All other kit programs ⁴⁶	0.60
Retail (time of sale)47	0.76
Direct install ⁴⁸	0.97

Table 12. Specialty LEDs—In-Service Rates by Program Type

Demand Savings Algorithms

Summer and winter demand savings are determined by applying a coincidence factor associated with each season.

Summer Peak Demand Savings $[\Delta kW] = \frac{(W_{base} - W_{post})}{1,000} \times CF_S \times ISR \times IEF_{D,S}$

Equation 6

Winter Peak Demand Savings
$$[\Delta kW] = \frac{(W_{base} - W_{post})}{1,000} \times CF_W \times ISR \times IEF_{D,W}$$

Equation 7

Where:

CF _{S/W}	=	Seasonal peak coincidence factor (Table 13)
IEF _D	=	Interactive effects factor to account for cooling demand savings or heating demand penalties associated with lighting power
		reductions (see Table 14)

Table 13. Specialty LEDs—Coincidence Factors⁴⁹

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.060	0.053	0.063	0.059	0.032
Winter	0.275	0.232	0.199	0.263	0.358

⁴⁵ Kits targeting low-income qualified communities. From Illinois TRM v10, based on 2018 Ameren Illinois income-qualified participant survey. Representative of first-year installations.

⁴⁶ From Illinois TRM v10 based on evaluation of ComEd PY9 Elementary Energy Education program. Representative of first-year installations.

⁴⁷ From Illinois TRM v10 based on evaluations of ComEd PY8, PY9, and CY2018 and Ameren PY8 programs. Representative of first-year installations.

⁴⁸ Dimetrosky, S., Parkinson, K. and Lieb, N. "Residential Lighting Evaluation Protocol – The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." January 2015. ISR for upstream programs, including storage lamps installed within four years of purchase. <u>http://energy.gov/sites/prod/files/2015/02/f19/UMPChapter21-residential-lighting-evaluationprotocol.pdf</u>.

⁴⁹ See Volume 1

Demand i enalites						
IEF _{D,S}						
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
Gas heat with AC	1.45	1.33	1.68	1.23	1.44	
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00	
Heat pump	1.45	1.33	1.68	1.23	1.44	
Electric resistance heat with AC	1.45	1.33	1.68	1.23	1.44	
Electric resistance heat with no AC	1.00	1.00	1.00	1.00	1.00	
No heat with AC	1.45	1.33	1.68	1.23	1.44	
Unconditioned space	1.00	1.00	1.00	1.00	1.00	
Heating/cooling unknown ⁵¹	1.39	1.28	1.58	1.20	1.38	

Table 14. Specialty LEDs—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties⁵⁰

IEF _{D,W}					
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Gas heat with AC	0.98	0.98	0.98	0.98	0.98
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00
Heat pump	0.71	0.67	0.65	0.74	0.81
Electric resistance heat with AC	0.44	0.36	0.38	0.42	0.52
Electric resistance heat with no AC	0.44	0.36	0.38	0.42	0.52
No heat with AC	0.98	0.98	0.98	0.98	0.98
Unconditioned space	1.00	1.00	1.00	1.00	1.00
Heating/cooling unknown52	0.76	0.72	0.73	0.75	0.80

* IEF for homes with no AC is most appropriate for customers with evaporative cooling or room air conditioners.

⁵⁰ Refer to Table 11.

⁵¹ Calculated using IEFs from a Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

⁵² Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Upstream/Midstream Program Assumptions

All general service, decorative, and reflector lamps with an equivalent wattage of 100 W or lower distributed though upstream or midstream programs should calculate savings using a combination of residential and non-residential savings methodologies with 95 percent of savings allocated to the residential sector and the remaining five percent of savings allocated to the commercial sector.⁵³ While only summer demand savings are specified for the commercial sector, winter demand savings are allowed for the portion of savings allocated to the residential sector.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

Historically, the average measure life is based upon rated lamp life of the LED. The measure life assumes an average use of 2.2 hours per day based on blended usage for indoor/outdoor applications and applies a 0.85 degradation factor to indoor/outdoor LEDs.

 $EUL_{Total} = \frac{Rated\ Life \times DF}{HOU \times 365.25}$

Equation 8

⁵³ Weighting assumptions based on statewide evaluator review of LED purchasing behavior for similar program designs as referenced in the 2018 EM&V upstream lighting memo.

Where:

Rated Life	=	10,000 hours, 12,000 hours, 15,000 hours, or 20,000 hours, as specified by the manufacturer; if unknown, assume a 10,000-hour lifetime ⁵⁴
~ -		o o z l l l l l l l 55

- $DF = 0.85 \text{ degradation factor}^{55}$
- HOU = 2.2 hours per day⁵⁶

Table 15. Specialty LEDs—Estimated Useful Life

Range of rated measure life (hours)	Assumed rated measure life (hours)	Specialty measure life (years)
<u><</u> 17,500	15,000	16
> 17,500	20,000	20*

* Measure life capped at 20 years. EUL may be deemed at 16 years in lieu of collecting manufacturer rated life or documenting customer baseline.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Program delivery type (low-income targeted kits, non-low-income targeted kits, retail, direct install)
- Number of LEDs installed
- ANSI C79.1-2002 nomenclature of LED installed (G40, PAR, etc.)
- Baseline and rated wattages of each replacement LED
- Lumen output of each replacement LED
- Manufacturer-rated lifetime of each replacement LED in hours
- Heating system type (gas, electric resistance, heat pump, none, unknown)
- Cooling system type (air conditioner, evaporative cooler, none, unknown)

⁵⁴ Minimum lifetime requirement under ENERGY STAR Lamps Specification V2.1, effective January 2, 2017.

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2.1%20Final%20Sp ecification.pdf.

⁵⁵ ENERGY STAR CFL Third Party Testing and Verification Off-the-Shelf CFL Performance: Batch 3. Figure 27, p. 47.

⁵⁶ The average daily usage of 2.2 hours per day is a blended value for indoor and outdoor lamps. Source: Evaluation of 2008 Texas 'Make Your Mark' Statewide CFL Program Report. Frontier Energy (formerly Associates). June 2009.

- Location of installed lamp (conditioned, unconditioned, or outdoor); only required when not assuming default weighting
- Baseline calculation methodology (EISA-affected non-reflector, EISA-exempt non-reflector, DOE-ruling-affected reflector, DOE-ruling-exempt reflector, manufacturer-rated equivalent incandescent wattage, or default wattage)
- Proof of purchase with date of purchase and quantity
 - Alternative: representative photos of installed units or other pre-approved method of installation verification
- ENERGY STAR certificate matching replacement model number
 - Alternative: other pre-approved method of certification (e.g., LM-79, LM-80, TM-21, ISTMT lap reports)
- For new construction projects only, these data points must be gathered for all permanently installed fixtures in the home to document the percentage that are high-efficacy.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v3.0	4/10/2015	TRM v3.0 origin.
v3.1	11/05/2015	TRM v3.1 update. Modification of in-service rate, revision of interactive effects factors to reflect indoor-specific values for additional heating and cooling equipment types. Consolidated default input assumptions for upstream lighting programs. Capped estimated measure life.
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter coincidence factors.
v4.0	10/10/2016	TRM v4.0 update. Updated IEF values.
v5.0	10/2017	TRM v5.0 update. Updated useful life estimates.
v6.0	11/2018	TRM v6.0 update. Updated useful life estimates. Updated interactive effects factors.

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 update. Removed dual baseline and updated useful life estimates. Added invoice and certificate requirements. Added option for new construction savings.
v8.0	10/2020	TRM v8.0 update. Defined midstream methodology and clarified default wattages by lumen range. Updated specialty lamps baselines.
v9.0	10/2021	TRM v9.0 update. Updated midstream methodology and added path for fixtures.
v10.0	10/2022	TRM v10.0 update. Updated for compliance with new DOE GSL definition. Several lamp types previously considered <i>specialty lamps</i> moved to <i>general service lamp</i> measure.
v11.0	10/2023	TRM v11.0 update. Added in-service rates by program type.

2.1.3 LED Nightlights Measure Overview

TRM Measure ID: R-LT-NL Market Sector: Residential Measure Category: Lighting Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive and direct install Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure provides a method for calculating savings for the replacement of an incandescent nightlight with an LED or electroluminescent nightlight.

Eligibility Criteria

This measure applies to all LED nightlights installed in a residential application.

Baseline Condition

The baseline condition is assumed to be an incandescent/halogen nightlight.

High-Efficiency Condition

The high-efficiency condition is a qualified LED nightlight.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings

Annual energy (kilowatt-hours, kWh) savings are calculated as follows.

Energy Savings
$$[\Delta kWh] = \frac{(W_{base} - W_{post})}{1,000} \times Hours \times ISR \times IEF_E$$

Equation 9

Where:

W _{base}	=	Baseline wattage. Use actual wattage if known (default = 7 W) ⁵⁷
W _{post}	=	Actual wattage of LED purchased/installed (default = 1 W for LED)
HOU	=	Average hours of use per year = 4,161 hours ⁵⁸
IEF _E	=	Interactive effects factor to account for cooling energy savings and heating energy penalties associated with lighting power reductions (see Table 17)
ISR	=	In-service rate, the percentage of incentivized units that are installed and in use (rather than removed, stored, or burnt out) to account for units incentivized but not operating (see Table 18)
1,000	=	Constant to convert from W to kW

Table 17. LED Nightlights—Interactive Effects for Cooling Energy Savings and Heating Energy Penalties⁵⁹

	IEFE				
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Gas heat with AC	1.06	1.13	1.17	1.15	1.12
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00
Heat pump	0.91	1.00	1.05	1.11	0.97
Electric resistance heat with AC	0.65	0.80	0.90	1.00	0.75
Electric resistance heat with no AC	0.57	0.69	0.76	0.83	0.65
No heat with AC	1.06	1.13	1.17	1.15	1.12

⁵⁷ Mertz, Stanley. "LED Nightlights Energy Efficiency Retail products programs." March 2018.

⁵⁸ Southern California Edison Company, "LED, Electroluminescent & Fluorescent Night Lights," Work Paper WPSCRELG0029 Rev. 1, February 2009, p. 2 and 3.

⁵⁹ Extracted from BEopt energy models used to estimate savings for envelope measures. Referencing the EISA baseline table, the typical lumen output was determined by taking the midpoint for the 60-watt equivalent lamp (900 lm), which was assumed to be the most typical installation. The resulting lumens were divided by the default wattage for incandescents (43 W), CFLs (13 W), and LEDs (10 W) resulting in an assumed efficacy for incandescents (21 lm/W), CFLs (70 lm/W), and LEDs (90 lm/W). IEF values were calculated using the following formula: 1 + HVAC_{savings}/Lighting_{savings}.

IEF _E					
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Unconditioned space	1.00	1.00	1.00	1.00	1.00
Heating/cooling unknown60	0.88	0.98	1.04	1.07	0.95

* IEF for homes with no AC is most appropriate for customers with evaporative cooling or room air conditioners.

Table 18. LED Nightlights—In-Service Rates by Program Type

Program type	ISR
Low-income community kits61	0.88
All other kit programs62	0.60
Retail (time of sale)63	0.76
Direct install ⁶⁴	0.97

Demand Savings

Summer and winter demand savings are determined by applying a coincidence factor associated with each season.

Summer Peak Demand Savings
$$[\Delta kW] = \frac{(W_{base} - W_{post})}{1,000} \times CF_S \times ISR \times IEF_{D,S}$$

Equation 10

Winter Peak Demand Savings
$$[\Delta kW] = \frac{(W_{base} - W_{post})}{1,000} \times CF_W \times ISR \times IEF_{D,W}$$

Equation 11

⁶⁰ Calculated using IEFs from a Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

⁶¹ Kits targeting low-income qualified communities. From Illinois TRM v10, based on 2018 Ameren Illinois income-qualified participant survey. Representative of first-year installations.

⁶² From Illinois TRM v10 based on evaluation of ComEd PY9 Elementary Energy Education program. Representative of first-year installations.

⁶³ From Illinois TRM v10 based on evaluations of ComEd PY8, PY9, and CY2018 and Ameren PY8 programs. Representative of first-year installations.

⁶⁴ Dimetrosky, S., Parkinson, K. and Lieb, N. "Residential Lighting Evaluation Protocol – The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." January 2015. ISR for upstream programs, including storage lamps installed within four years of purchase. <u>http://energy.gov/sites/prod/files/2015/02/f19/UMPChapter21-residential-lighting-evaluationprotocol.pdf</u>.

Where:

- $CF_{S/W}$ = Seasonal peak coincidence factor (see Table 19)
- *IEF_D* = *Interactive effects factor to account for cooling demand savings or heating demand penalties associated with lighting power reductions (see Table 20)*

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.00	0.00	0.00	0.00	0.00
Winter	0.67	0.71	0.61	0.75	1.00

Table 19. LED Nightlights—Coincidence Factors⁶⁵

Table 20. LED Nightlights—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties⁶⁶

IEF _{D,S}					
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Gas heat with AC	1.45	1.33	1.68	1.23	1.44
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00
Heat pump	1.45	1.33	1.68	1.23	1.44
Electric resistance heat with AC	1.45	1.33	1.68	1.23	1.44
Electric resistance heat with no AC	1.00	1.00	1.00	1.00	1.00
No heat with AC	1.45	1.33	1.68	1.23	1.44
Unconditioned space	1.00	1.00	1.00	1.00	1.00
Heating/cooling unknown67	1.39	1.28	1.58	1.20	1.38

⁶⁶ Refer to Table 20.

⁶⁵ From TX TRM *commercial lamps & fixtures* measure for dusk-to-dawn operation.

⁶⁷ Ibid.

IEF _{D,W}					
Heating/cooling type*	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Gas heat with AC	0.98	0.98	0.98	0.98	0.98
Gas heat with no AC	1.00	1.00	1.00	1.00	1.00
Heat pump	0.71	0.67	0.65	0.74	0.81
Electric resistance heat with AC	0.44	0.36	0.38	0.42	0.52
Electric resistance heat with no AC	0.44	0.36	0.38	0.42	0.52
No heat with AC	0.98	0.98	0.98	0.98	0.98
Unconditioned space	1.00	1.00	1.00	1.00	1.00
Heating/cooling unknown68	0.76	0.72	0.73	0.75	0.80

* IEF for homes with no AC is most appropriate for customers with evaporative cooling or room air conditioners.

Upstream/Midstream Program Assumptions

All general service lamps with an equivalent wattage of 100 W or lower distributed though upstream or midstream programs should calculate savings using a combination of residential and non-residential savings methodologies with 95 percent of savings allocated to the residential sector and the remaining 5 percent of savings allocated to the commercial sector.⁶⁹ While only summer demand savings are specified for the commercial sector, winter demand savings are allowed for the portion of savings allocated to the residential sector.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

68 Ibid.

⁶⁹ Weighting assumptions based on statewide evaluator review of LED purchasing behavior for similar program designs as referenced in the 2018 EM&V upstream lighting memo.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for LED nightlights is 8 years.⁷⁰

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Program delivery type (low-income targeted kits, non-low-income targeted kits, retail, direct install)
- Number of LED nightlights installed
- LED nightlight wattage
- Heating system type (gas, electric resistance, heat pump, none, unknown)
- Cooling system type (air conditioner, evaporative, none, unknown)
- Proof of purchase with date of purchase and quantity
 - Alternative: representative photos of replacement units or another preapproved method of installation verification

References and Efficiency Standards

Not applicable.

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

⁷⁰ Southern California Edison Company, "LED, Electroluminescent & Fluorescent Night Lights," Work Paper WPSCRELG0029 Rev. 1, February 2009, p. 2 and 3.

Document Revision History

TRM version	Date Description of change	
v10.0	10/2022	TRM v10.0 origin.
v11.0	10/2023	TRM v11.0 update. Added in-service rates by program type.

Table 21. LED Nightlights—Revision History

2.2 RESIDENTIAL: HEATING, VENTILATION, AND AIR CONDITIONING

2.2.1 Air Conditioner and Heat Pump Tune-Ups Measure Overview

TRM Measure ID: R-HV-TU Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to central air conditioners (AC) and heat pumps (HP) of any configuration where all applicable actions from the checklist below are completed. An AC tune-up involves checking, cleaning, adjusting, and resetting the equipment to factory conditions to restore operating efficiencies, on average, closer to as-new performance. This measure applies to all residential applications.

For this measure, the service technician must complete the following tasks according to industry best practices. To properly assess and adjust the refrigerant charge level, the unit must be operating under significant (normal) cooling load conditions. Therefore, this measure may only be performed for energy savings reporting purposes when the outdoor ambient dry bulb temperature is above 75°F, and the indoor return air dry bulb temperature is above 70°F.

Air conditioner inspection and tune-up checklist:71

- Tighten all electrical connections, measure motor voltage and current
- Lubricate all moving parts, including motor and fan bearings
- Inspect and clean the condensate drain
- Inspect controls of the system to ensure proper and safe operation. Check the startup/shutdown cycle of the equipment to assure the system starts, operates, and shuts off properly.
- Clean evaporator and condenser coils

⁷¹ Based on ENERGY STAR HVAC Maintenance Checklist. <u>www.energystar.gov/index.cfm?c=heat_cool.pr_maintenance</u>.

- Clean indoor blower fan components
- Inspect and clean or change air filters; replacement preferred best practice
- Measure airflow via static pressure across the cooling coil and adjust to manufacturers specifications
- Check refrigerant level and adjust to manufacturer specifications
- Check capacitor functionality and capacitance; compare to OEM specifications

Eligibility Criteria

HVAC systems must be manufactured before January 1, 2023, to be eligible for this measure.⁷² All residential customers are eligible for this measure if they have refrigerated air conditioning 65,000 Btu/hr or less in cooling capacity that has not been serviced through a utility program in the last five years.

This measure is also applicable to packaged terminal air conditioners and heat pumps (PTAC/PTHPs).

Baseline Condition

The baseline is a system with some or all of the following issues:

- Dirty condenser coil
- Dirty evaporator coil
- Dirty blower wheel
- Dirty filter
- Improper airflow
- Incorrect refrigerant charge

The baseline system efficiency should be calculated using the following formulas:

$$EER_{pre} = (1 - EL) \times EER_{post}$$

Equation 12

$$HSPF_{pre} = (1 - EL) \times HSPF_{post}$$

Equation 13

⁷² The current federal standard became effective on January 1, 2023, with full manufacturing compliance of the new SEER2 testing procedure being enforced as of April 24, 2023. This measure will be updated in the future to address the new efficiency ratings. <u>https://www.regulations.gov/document/EERE-2021-BT-TP-0030-0027</u>.

Where:

EER _{pre}	=	Efficiency of the cooling equipment before tune-up
EL	=	Efficiency loss due to dirty coils, blower, filter, improper airflow, and/or incorrect refrigerant charge = 0.05
EER _{post}	=	Deemed cooling efficiency of the equipment after tune-up = 11.2 EER
HSPF _{pre}	=	Heating efficiency of the air source heat pump before tune-up
HSPF _{post}	=	Deemed heating efficiency of air source heat pumps after tune-up $= 7.7$ HSPF

High-Efficiency Condition

After the tune-up, the equipment must be clean with airflows and refrigerant charges adjusted as appropriate and set forth above, with the added specification that refrigerant charge adjustments must be within ±3 degrees of target sub-cooling for units with thermal expansion valves (TXV) and ±5 degrees of target super heat for units with fixed orifices or capillary tubes.

The efficiency standard, or efficiency after the tune-up, is deemed to be the manufacturer specified energy efficiency ratio (EER) of the existing central air conditioner or heat pump, which has been determined using the following logic and standards. The useful life of an AC unit is 19 years. The useful life of a heat pump is 16 years. Therefore, it is conservatively thought that the majority of existing, functioning units were installed under the federal standard in place between January 23, 2006, and January 1, 2015, which set a baseline of 13 SEER and 7.7 HSPF⁷³. A 13 SEER is equivalent to approximately 11.2 EER^{74} using the conversion developed by Lawrence Berkeley Lab and US DOE: EER = $-0.02 \times \text{SEER}^2 + 1.12 \times \text{SEER}$.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Savings are based on an assumed efficiency loss factor of 5 percent due to dirty coils, dirty filters, improper airflow, and/or incorrect refrigerant charge.⁷⁵

⁷³ Code specified HSPF from federal standard effective January 23, 2006 through January 1, 2015.

⁷⁴ Code specified 13 SEER from federal standard effective January 23, 2006 through January 1, 2015, converted to EER using EER = -0.02 x SEER² + 1.12 x SEER. National Renewable Energy Laboratory (NREL). "Building America House Simulation Protocols." US Department of Energy. Revised October 2010. <u>http://www.nrel.gov/docs/fy11osti/49246.pdf</u>.

⁷⁵ Energy Center of Wisconsin, May 2008; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research."

Energy Savings Algorithms

Heating energy savings are only applicable to heat pumps.

Total Energy Savings
$$[\Delta kWh] = kWh_{C} + kWh_{H}$$

Equation 14

Cooling Energy Savings
$$[kWh_C] = Cap_C \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right) \times EFLH_C \times \frac{1 \ kW}{1,000 \ W}$$

Equation 15

$$Heating \ Energy \ Savings \ [kWh_H] = Cap_H \times \left(\frac{1}{HSPF_{pre}} - \frac{1}{HSPF_{post}}\right) \times EFLH_H \times \frac{1 \ kW}{1,000 \ W}$$

Equation 16

Where:

Cap _c	=	Rated cooling capacity of the equipment based on model number [Btuh] (1 ton = 12,000 Btuh)
Сарн	=	Rated heating capacity of the equipment based on model number [Btuh] (1 ton = 12,000 Btuh)
EER _{pre}	=	Cooling efficiency of the equipment pre-tune-up using Equation 12 [Btuh/W]
EER _{post}	=	Cooling efficiency of the equipment after the tune-up [Btuh/W]; assume 11.2
HSPF _{pre}	=	Heating efficiency of the equipment pre-tune-up using Equation 13 [Btuh/W]
HSPF _{post}	=	Heating efficiency of the equipment after the tune-up [Btuh/W]; assume 7.7
EFLH _{C/H}	=	Cooling/heating equivalent full-load hours for appropriate climate zone [hours]

Table 22. AC/HP Tune-Ups—Equivalent Full Load Cooling/Heating Hours⁷⁶

Climate zone	EFLHc	EFLH _H
Zone 1: Amarillo	1,142	1,880
Zone 2: Dallas	1,926	1,343
Zone 3: Houston	2,209	1,127

⁷⁶ ENERGY STAR Central AC/HP Savings Calculator. April 2009 update. <u>https://www.energystar.gov/sites/default/files/asset/document/ASHP Sav Calc.xls</u>.

Climate zone	EFLH _c	EFLH _H
Zone 4: Corpus Christi	2,958	776
Zone 5: El Paso	1,524	1,559

Demand Savings Algorithms

Summer Peak Demand Savings
$$[\Delta kW] = Cap_C \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right) \times CF_S \times \frac{1 \ kW}{1,000 \ W}$$

Equation 17

Winter Peak Demand Savings
$$[\Delta kW] = Cap_H \times \left(\frac{1}{HSPF_{pre}} - \frac{1}{HSPF_{post}}\right) \times CF_W \times \frac{1 \ kW}{1,000 \ W}$$

Equation 18

Summer and winter demand savings are determined by applying a coincidence factor for each season. Winter peak demand savings are only applicable to heat pumps.

Where:

 $CF_{S/W}$ = Summer/winter peak coincidence factor (see Table 23)

Table 23. AC/HP Tune-Ups—Coincidence Factors⁷⁷

Season	CF
Summer ⁷⁸	0.87
Winter ⁷⁹	0.83

Deemed Energy Savings Tables

Applying the above algorithms results in the deemed energy savings per ton in Table 24. Heating savings are only applicable for heat pumps.

⁷⁷ Coincidence factors calculated in accordance with the current peak definition are lower than expected for the Texas climate. Residential HVAC measures will temporarily revert to the coincidence factors used in TX TRM v4.0 before the change to the peak definition. These values will be reevaluated in upcoming TRM cycles to better align with the current peak definition.

⁷⁸ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Assuming that maximum cooling occurs during the peak period, the guideline leads to a coincidence factor of 1 / 1.15 = 0.87.

⁷⁹ ACCA Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling dominated climates). Based on AHRI data for 1.5–5 ton HVAC systems, the average ratio of rated heating capacity to cooling capacity is 0.96. Assuming that maximum heating occurs during the peak period and adjusting for the average ratio of heating-to-cooling capacity, the guideline leads to a coincidence factor of 0.96 / 1.15 = 0.83.

Climate zone	Cooling (kWh/ton)	Heating (kWh/ton)
Zone 1: Amarillo	64.4	154.2
Zone 2: Dallas	108.6	110.2
Zone 3: Houston	124.6	92.4
Zone 4: Corpus Christi	166.8	63.7
Zone 5: El Paso	85.9	127.9

Table 24. AC/HP Tune-Ups—Energy Savings (kWh/ton)

Deemed Summer Demand Savings Tables

Applying the above algorithms results in the deemed summer demand savings per ton in Table 25.

Table 25. AC/HP Tune-Ups—Summer Peak Demand Savings (kW/ton)

Climate zone	Summer kW/ton
Zone 1: Amarillo	0.049
Zone 2: Dallas	
Zone 3: Houston	
Zone 4: Corpus Christi	
Zone 5: El Paso	

Deemed Winter Demand Savings Tables

Applying the above algorithms results in the deemed winter demand savings per ton in Table 26. Winter peak demand savings are only applicable for heat pumps.

Table 26. AC/H	P Tune-Ups—Pea	ak Demand	Savings	(kW/ton)
----------------	----------------	-----------	---------	----------

Climate zone	Winter kW/ton
Zone 1: Amarillo	0.068
Zone 2: Dallas	
Zone 3: Houston	
Zone 4: Corpus Christi	
Zone 5: El Paso	

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for a tune-up is five years.⁸⁰

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Most recent tune-up service date or confirmation that system has not been serviced within the previous five years
- Climate zone or county
- Equipment type (split AC, split HP, packaged AC, packaged HP, PTAC, PTHP)
- Manufacturer, model number, and serial number
- Cooling and heating capacity of the serviced unit (tons)
- Heating capacity of the serviced unit if applicable (tons)
- Refrigerant type
- Target superheat or subcooling
- Post tune-up superheat or subcooling
- Amount of refrigerant added or removed
- Static pressures before and after tune-up
- Return and supply dry bulb and wet bulb temperatures
- Before and after tune-up pictures of components illustrating condition change due to cleanings (Note: pictures that include well-placed familiar objects like hand tools often provide a sense of scale and a reference for color/shading comparisons. Pictures of equipment name plates are useful).

References and Efficiency Standards

Petitions and Rulings

Not applicable.

⁸⁰ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group; Page 1-3, Table 1. <u>https://library.cee1.org/sites/default/files/library/8842/CEE_Eval_MeasureLifeStudyLights&HVACGDS_1Jun2007.pdf</u>.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v4.0	10/10/2015	TRM v4.0 origin.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated coincidence factors.
v11.0	10/2023	TRM v11.0 update. Updated demand savings. Clarified eligibility for PTACs and PTHPs.

Table 27. AC/HP Tune-Ups—History

2.2.2 Central and Mini-Split Air Conditioners and Heat Pumps Measure Overview

TRM Measure ID: R-HV-CM Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Replace-on-burnout, early retirement, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

Residential replacement of existing heating and cooling equipment with a new central or minisplit air-source air conditioner (AC) or heat pump (HP) in an existing building, or the installation of a new central AC or HP in a new residential construction. Downsized systems that are rightsized per heat-load calculation are also eligible. A new central system includes an entire packaged unit or a split system consisting of an indoor unit with a matching remote condensing unit. This measure also applies to the installation of dual-fuel HPs and DC inverter systems that meet all existing measure eligibility criteria.

Additional savings may be available for duct removal in combination with the installation of a ductless mini-split. In these cases, refer to the *duct sealing* measure and follow the savings methodology (standard approach) using a value of 0 cubic feet per minute (CFM) as the post-improvement duct leakage. Leakage testing must be performed on the existing ductwork to claim savings for duct removal.

Eligibility Criteria

The deemed savings apply to units with a capacity of \leq 65,000 Btu/hour (5.4 tons).

Equipment shall be properly sized to the dwelling based on ASHRAE or ACCA Manual J standards. Manufacturer datasheets for installed equipment or documentation of AHRI or DOE CCMS certification must be provided.^{81,82} Savings should be calculated using rated capacities whenever possible. Reported system capacities and efficiencies should always match those verified by AHRI or DOE as tested under AHRI operating conditions for a specific combination

⁸¹ Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Directory: <u>https://www.ahridirectory.org/</u>.

⁸² Department of Energy Compliance Certification Management System (DOE CCMS): <u>https://www.regulations.doe.gov/certification-data/</u>.

of equipment, including condenser, coil, and furnace (or condenser only for packaged units). Savings should never be calculated using efficiency ratings for individual system components.

Customers should be advised against using the emergency heat (EM HEAT) setting on heat pump thermostats. This setting is meant only for use in emergency situations when the heat pump is damaged or malfunctioning. Supplemental heating automatically kicks on in below-freezing conditions using the regular HEAT setting. Contractors installing a new heat pump thermostat with equipment install shall advise the customer of correct thermostat usage.

For early retirement projects, to receive savings, the unit to be replaced must be functioning at the time of removal with a maximum age of 24 years for ACs and 20 years for HPs. Otherwise, claim savings for a replace-on-burnout project. Additional guidance for systems applying the default age is provided in the Savings Algorithms and Input Variables section.

The replacement of an evaporative cooler with a refrigerated system is eligible where the decision to change equipment types predates or is independent of the decision to install efficient equipment and should be claimed against the new construction baseline.

The replacement of a room AC with a central or mini-split AC or HP is eligible and should be claimed against the new construction baseline. Refer to the Replace-on-Burnout or Early Retirement of an Electric Resistance Furnace section for guidance about the appropriate heating baseline for residences with electric resistance heat. Under this scenario, no savings should be awarded for rightsizing.

System rightsizing refers to installing an HVAC system that has been sized in accordance with a load calculation, such as a Manual J, considering specific home characteristics. Rightsizing retrofit projects could include upsizing or downsizing by one-half ton or more from the existing system. New construction projects are not eligible to receive deemed savings for system rightsizing.⁸³

For system downsizing, savings may be claimed against the applicable replace-on-burnout or early retirement scenario using the existing higher system pre-capacity with the lower system post-capacity if a Manual J load calculation is completed and included with project documentation.

For system upsizing, savings should generally be claimed against the new construction baseline. However, optional rightsizing savings are available for upsizing up to one ton for the scenarios outlined below. In these cases, savings may be claimed against the applicable replace-on-burnout or early retirement scenario if the specified conditions are met. For these scenarios, savings must be determined using the lower pre-tonnage. These exceptions should be applied consistently at the program level for the duration of the program year.

• Replacing a single larger capacity system with multiple smaller capacity systems.⁸⁴ If the multiple installed units do not share the same efficiency value, savings should be determined using the most conservative efficiency value.

⁸³ For projects using a custom baseline, see TRM Volume 4.

⁸⁴ This exception is allowed to account for efficiency improvements due to zoning that are not reflected in the current savings methodology.

- Replacing a single-stage system with a variable-speed system.⁸⁵ This scenario only applies to the replacement of a single-stage system.
- If a Manual J load calculation is completed and included with project documentation.⁸⁶

Additionally, low-income or hard-to-reach programs may use the electric resistance baseline for the following two scenarios:

- The electric resistance baseline may be used for systems upsized by no more than a half-ton in lieu of the new construction baseline. Under this scenario, cooling savings should be claimed against the new construction baseline using the installed (higher) capacity. Heating savings should be claimed against the electric resistance baseline using the existing (lower) capacity. Documentation should be aligned with the rightsizing and electric resistance baseline requirements outlined in this measure.
- The second scenario is for a major multifamily renovation when a centralized system, such as a boiler, is replaced with individual heat pumps. For this scenario, the electric resistance baseline may be claimed in lieu of new construction only if the building owner can document intent to install electric-resistance furnaces without program intervention. The cooling savings should still be claimed against the new construction baseline. Documentation should follow early retirement and electric-resistance baseline requirements.

When replacing a single unit with multiple units where the capacity is the same or has been downsized, savings should be calculated using the total system pre- and post-capacity. Again, if the multiple installed units do not share the same efficiency value, savings should be looked up using the most conservative efficiency value.

Baseline Condition

New Construction, Replace-on-Burnout, or Early Retirement of an Air-Source AC or HP

New construction baseline efficiency values for ACs or HPs are compliant with the current federal standard,^{87,88} effective January 1, 2023. The baseline is assumed to be a new system with an AHRI-listed SEER2 rating consistent with the values listed in Table 28 and Table 29. These baselines are also applicable to central ACs with gas, electric resistance, or unknown heating replacing an HP; evaporative coolers with central, space, or no heating; and room/window ACs with central, space, or no heating.

⁸⁵ This exception is allowed to account for efficiency improvements due to operating at variable speeds that are not reflected in the current savings methodology.

⁸⁶ This exception is allowed to account for efficiency improvements due to replacing a unit that was operating longer than designed to keep up with actual site load conditions.

⁸⁷ DOE minimum efficiency standard for residential air conditioners/heat pumps. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=48&action=vie wlive.</u>

⁸⁸ Walter-Terrinoni, Helen, "New US Energy Efficiency Standards and Refrigerants for Residential ACs and Heat Pumps." Air-Conditioning, Heating, & Refrigeration Institute (AHRI). February 1, 2022.

For replace-on-burnout projects, the cooling baselines are reduced by 4.3 percent. This value is based on Energy Systems Laboratory (ESL) survey data and incorporates an adjustment to the baseline SEER2/EER2 value to reflect the percentage of current replacements that do not include the installation of an AHRI-matched system.^{89,90} Heating baselines were not included in original ESL survey data and are not adjusted.

For early retirement projects, baselines are defined in Table 28 and Table 29 based on the applicable federal standard base on manufacture year. These baselines have been converted to SEER2, EER2, and HSPF2 by extrapolating from known values referenced in the current federal standard. Systems manufactured as of January 1, 2023, are not eligible for early retirement.

For early retirement projects involving an HP replacing an AC with gas heat, early retirement cooling baselines should be used in combination with new construction heating baselines.

For all systems with a part-load efficiency rating of 15.2 SEER2 or higher, the full-load efficiency baseline is reduced to 9.8 EER2, consistent with the EER2 federal standard specified for the Southwest region. While this standard does not directly apply to Texas, it is used here to recognize a reduced full-load allowance for systems achieving higher part-load efficiency ratings. This value is not reduced based on ESL survey data. Where applicable, the reduced 9.8 EER2 baseline should be applied in lieu of the EER2 baseline value presented in Table 28 and Table 29 except where the specified baseline EER2 value is lower than 9.8 EER2.

Replace-on-Burnout or Early Retirement of an Electric Resistance Furnace

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.⁹¹ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.⁹² Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters should calculate savings using a HP baseline.

By the nature of the technology, all electric resistance furnaces have the same efficiency with $HSPF = 3.412.^{93}$ Projects in which an electric resistance furnace is replaced, either in replaceon-burnout or early retirement scenarios, use this baseline for heating-side savings.

⁸⁹ Frontier Energy on behalf of the Electric Utility Marketing Managers of Texas (EUMMOT). "Petition to revise Existing Commission-Approved Deemed Savings Values for Central Air Conditioning and Heat Pump Systems: Docket No. 36780." Public Utility Commission of Texas. Approved August 27, 2009. <u>https://interchange.puc.texas.gov/</u>. Adapted for new 14 SEER baseline.

⁹⁰ The original petition defines the reduced baseline as 12.44 SEER compared to a 13 SEER federal standard. This deemed value was converted to a percentage reduction to accommodate a transition from SEER to SEER2. No EER adjustment is discussed in the original petition because the previous deemed savings structure only awarded savings based on SEER ratings. However, supporting documentation of the original filing makes it clear that the adjustment is appropriate for both part- and full-load cooling efficiency values. Therefore, the deemed percentage reduction is applied to both SEER2 and EER2 ROB baselines.

⁹¹ Electric Resistance Heating: <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

⁹² Portable Heaters: <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

⁹³ COP = HSPF x 1,055 J/BTU / 3,600 J/W-hr. For Electric Resistance, heating efficiency is 1 COP. Therefore, HSPF = 1 x 3,600 / 1,055 = 3.412.

Project type	Capacity (Btu/hr)	Cooling mode
New construction, split air conditioners	< 45,000	14.3 SEER2 11.7 EER2
	<u>≥</u> 45,000	13.8 SEER2 11.2 EER2
New construction, packaged air conditioners	All	13.4 SEER2 10.9 EER2
Replace-on-burnout, split air conditioners	< 45,000	13.7 SEER2 11.2 EER2
	<u>≥</u> 45,000	13.2 SEER2 10.7 EER2
Replace-on-burnout, packaged air conditioners	All	12.8 SEER2 10.4 EER2
Early retirement, air conditioners (manufactured 1/1/2015 through 12/31/2022)	All	12.8 SEER2 10.4 EER2
Early retirement, air conditioners (when applying default age) ⁹⁴	All	12.3 SEER2 10.0 EER2
Early retirement, air conditioners (manufactured 1/23/2006 through 12/31/2014)	All	11.9 SEER2 9.7 EER2
Early retirement, air conditioners (manufactured before 1/23/2006)	All	9.1 SEER2 7.4 EER2
All systems rated at 15.2 SEER2 or higher95	All	9.8 EER2

Table 28. Central and Mini-Split ACs—Baseline Efficiencies

Table 29. Central and Mini-Split HPs—Baseline Efficiencies

Project type	Cooling mode	Heating mode
New construction, split heat pumps	14.3 SEER2 11.7 EER2	7.5 HSPF2
New construction, packaged heat pumps	13.4 SEER2 10.9 EER2	6.7 HSPF2
Replace-on-burnout, split heat pumps	13.7 SEER2 11.2 EER2	7.5 HSPF2
Replace-on-burnout, packaged heat pumps	12.8 SEER2 10.4 EER2	6.7 HSPF2

⁹⁴ Baseline efficiencies are calculated by taking the average the early retirement categories for 2006-2014 and 2015-2022.

⁹⁵ When installing any system with a part-load efficiency rating of 15.2 SEER2 or higher, the reduced 9.8 EER2 full-load efficiency baseline should be applied in lieu of the applicable value presented earlier in the table except where the specified baseline EER2 value is lower than 9.8 EER2.

Project type	Cooling mode	Heating mode
Early retirement, split heat pumps (manufactured 1/1/2015 through 12/31/2022)	12.8 SEER2 10.4 EER2	6.9 HSPF2
Early retirement, packaged heat pumps (manufactured 1/1/2015 through 12/31/2022)	12.8 SEER2 10.4 EER2	6.7 HSPF2
Early retirement, split heat pumps (when applying default age) ⁹⁶	12.3 SEER2 10.0 EER2	6.7 HSPF2
Early retirement, packaged heat pumps (when applying default age) ⁹⁷	12.3 SEER2 10.0 EER2	6.6 HSPF2
Early retirement, heat pumps (manufactured 1/23/2006 through 12/31/2014)	11.9 SEER2 9.7 EER2	6.5 HSPF2
Early retirement, heat pumps (manufactured before 1/23/2006)	9.1 SEER2 7.4 EER2	5.7 HSPF2
All systems rated at 15.2 SEER2 or higher ⁹⁸	9.8 EER2	_
Replace-on-burnout or early retirement, electric resistance furnace ⁹⁹	_	3.412 HSPF2

High-Efficiency Condition

Rated system cooling (SEER2) and heating (HSPF2) efficiencies must meet or exceed the federal standard specified in Table 28 and Table 29. HVAC equipment with SEER2 meeting federal standard minimum requirements is eligible for early retirement cooling savings with verification of age of existing equipment and removal of functional inefficient equipment. HPs with HSPF2 meeting the minimum federal standard replacing electric resistance furnaces should follow the electric resistance documentation requirements.

Since there is no full-load efficiency requirement specified in the current federal standard, systems that comply with SEER2 and HSPF2 requirements but do not comply with the EER2 requirements outlined in Table 28 and Table 29 may still be eligible to claim savings. Systems with qualifying SEER2 and HSPF2 energy ratings are permitted to claim cooling energy savings, heating energy savings, and winter demand savings for systems, but not summer demand savings where the EER2 rating does not comply with the minimum requirement.

⁹⁶ Baseline efficiencies are calculated by taking the average the early retirement categories for 2006–2014 and 2015–2022.

⁹⁷ Ibid.

⁹⁸ When installing any system with a part-load efficiency rating of 15.2 SEER2 or higher, the reduced 9.8 EER2 full-load efficiency baseline should be applied in lieu of the applicable value presented earlier in the table except where the specified baseline EER2 value is lower than 9.8 EER2.

⁹⁹ When installing a heat pump replacing a split air conditioner with an electric resistance furnace, the reduced 3.412 HSPF2 heating baseline efficiency should be applied in lieu of the applicable value presented earlier in the table.

Split system efficiencies are driven primarily by the efficiency of the condenser unit. If the paired outdoor and indoor units are not listed on the AHRI certification listing and only provide DOE CCMS testing results, then the capacity and efficiency of the high-efficiency condition shall not exceed the average of the AHRI certification listing pairing for the matching condenser. The DOE CCMS listing provides documentation of the results that are on the AHRI certification listing and can be downloaded and filtered based on listing using a similar condenser and various indoor units.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy and demand savings algorithms and associated input variables are listed below.

For early retirement or rightsizing projects, attempt to determine the rated capacity of the existing unit. The rated capacity may be found on the manufacturer specification sheet for the existing unit if the new system is not available on the AHRI or DOE CCMS directories. If the model number of the existing unit is unobtainable or if the manufacturer specification sheet cannot be found, use nominal tonnage for both the existing and new unit. Never use nominal tonnage for the existing unit in combination with rated tonnage for the new unit, which can lead to overstated savings. Additionally, never use nominal tonnage to determine savings for projects where no early retirement or rightsizing has occurred.

For early retirement, if age is unknown, assume a default age equal to the replaced unit estimated useful life (EUL) resulting in a remaining useful life (RUL) of 7 (ACs) or 6 years (HPs). Default age may be used exclusively if applied consistently for all early retirement projects. This is the only scenario where an early retirement baseline can be applied to systems older than 24 years for ACs and 20 years for HPs. Otherwise, the default should only be used when a project is reported and documented as having a nameplate that is illegible. Default early retirement baselines are specified in Table 28 and Table 29 for use with the default age.

Energy Savings Algorithms

$$Total \ Energy \ Savings \ [\Delta kWh] = kWh_C + kWh_H$$

Equation 19

Cooling Energy Savings
$$[kWh_C] = \left(\frac{Cap_{C,pre}}{\eta_{baseline,C}} - \frac{Cap_{C,post}}{\eta_{installed,C}}\right) \times EFLH_C \times \frac{1 \ kW}{1,000 \ W}$$

Equation 20

$$Heating \ Energy \ Savings \ [kWh_H] = \left(\frac{Cap_{H,pre}}{\eta_{baseline,H}} - \frac{Cap_{H,post}}{\eta_{installed,H}}\right) \times EFLH_H \times \frac{1 \ kW}{1,000 \ W}$$

Equation 21

Demand Savings Algorithms

Summer Peak Demand Savings
$$[\Delta kW] = \left(\frac{Cap_{C,pre}}{\eta_{baseline,C}} - \frac{Cap_{C,post}}{\eta_{installed,C}}\right) \times CF_S \times \frac{1 \, kW}{1,000 \, W}$$

Equation 22

Winter Peak Demand Savings
$$[\Delta kW] = \left(\frac{Cap_{H,pre}}{\eta_{baseline,H}} - \frac{Cap_{H,post}}{\eta_{installed,H}}\right) \times CF_W \times \frac{1 \, kW}{1,000 \, W}$$

Equation 23

Where:

- For early retirement (ER), cooling/heating capacity of the existing Cap_{C/H.pre} = equipment; for replace-on-burnout (ROB) and new construction (NC), rated cooling/heating capacity of the new equipment [Btuh]; 1 ton = 12,000 Btuh
- Cooling/heating capacity of the new equipment [Btuh]; 1 ton = Cap_{C/H,post} = 12,000 Btuh

Note: When claiming early retirement or rightsizing savings, pre- and post-capacity should be expressed as a nominal tonnage multiplied by 12,000 Btuh/ton. In all other cases, pre- and post-capacity should be set equal to the rated post-capacity at AHRI standard conditions.

$\eta_{\mathit{baseline},C}$	=	Baseline cooling efficiency of existing equipment (ER) or standard equipment (ROB/NC) [Btuh/W]
$\pmb{\eta}$ installed,C	=	Rated cooling efficiency of the newly installed equipment (must exceed ROB/NC baseline efficiency standards in Table 28 and Table 29) [Btuh/W]
$\eta_{\mathit{baseline},H}$	=	Baseline heating efficiency of existing equipment (ER) or standard equipment (ROB/NC) [Btuh/W]
η installed,H	=	Rated heating efficiency of the newly installed equipment (must exceed baseline efficiency standards in Table 29) [Btuh/W]

Note: Use SEER2 for cooling kWh, EER2 for summer kW, and HSPF2 for heating kWh and winter kW savings calculations.

EFLH_{C/H} Cooling/heating equivalent full-load hours (Table 30) = С

$$F_{S/W}$$
 = Summer/winter seasonal peak coincidence factor (Table 31)

Climate zone	EFLH _c	EFLH _H
Zone 1: Amarillo	1,142	1,880
Zone 2: Dallas	1,926	1,343
Zone 3: Houston	2,209	1,127
Zone 4: Corpus Christi	2,958	776
Zone 5: El Paso	1,524	1,559

Table 30. Central and Mini-Split AC/HPs—Equivalent Full Load Cooling/Heating Hours¹⁰⁰

Table 31. Central and Mini-Split AC/HPs—Coincidence Factors¹⁰¹

Season	CF		
Summer ¹⁰²	0.87		
Winter ¹⁰³	0.83		

Early Retirement

Annual energy (kWh) and summer peak demand (kW) savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (EUL RUL)

Annual energy and summer peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

¹⁰⁰ ENERGY STAR Central AC/HP Savings Calculator.

¹⁰¹ Coincidence factors calculated in accordance with the current peak definition are lower than expected for the Texas climate. Residential HVAC measures will temporarily revert to the coincidence factors used in TX TRM v4.0 before the change to the peak definition. These values will be reevaluated in upcoming TRM cycles to better align with the current peak definition.

¹⁰² Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Assuming that maximum cooling occurs during the peak period, the guideline leads to a coincidence factor of 1 / 1.15 = 0.87.

¹⁰³ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Based on AHRI data for 1.5–5 ton HVAC systems, the average ratio of rated heating capacity to cooling capacity is 0.96. Assuming that maximum heating occurs during the peak period and adjusting for the average ratio of heating to cooling capacity, the guideline leads to a coincidence factor of 0.96 / 1.15 = 0.83.

Where:

RUL	=	Remaining useful life (see Table 32 or Table 33). If individual			
		system components were installed at separate times, use the			
		condenser age as a proxy for the entire system. For HPs replacing			
		an AC with an electric resistance furnace, use the AC RUL table.			

EUL = Estimated useful life = 18 years (AC); 15 years (F	Estimated useful life = 18 years (AC); 15 years (HP)
--	--

				-
Age of replaced unit (years)	Remaining useful life (years)		Age of replaced unit (years)	Remaining useful life (years)
1	16.8		14	8.6
2	15.8		15	8.2
3	14.9		16	7.9
4	14.1		17	7.6
5	13.3		18	7.0
6	12.6		19	6.0
7	11.9		20	5.0
8	11.3		21	4.0
9	10.8		22	3.0
10	10.3		23	2.0
11	9.8		24	1.0
12	9.4	1	25 ^{104,105}	0.0
13	9.0		h	·

Table 32. Central and Mini-Split AC/HPs—RUL of Replaced AC

Age of replaced unit (years)	Remaining useful life (years)	Age of replaced unit (years)	Remaining useful life (years)
1	13.7	12	7.9
2	12.7	13	7.6
3	12.0	14	7.0
4	11.3	15	6.0
5	10.7	16	5.0
6	10.2	17	4.0
7	9.7	18	3.0

Table 33. Central and Mini-Split AC/HPs-RUL of Replaced HP

¹⁰⁴ RULs are capped at the seventy-fifth percentile as determined based on DOE survival curves (see Figure 1). Systems older than this age should use the ROB baseline. See the January 2015 memo, "Considerations for Early Replacement of Residential Equipment," for further detail.

¹⁰⁵ Ward, B., Bodington, N., Farah, H., Reeves, S., and Lee, L. "Considerations for Early Replacement of Residential Equipment." Prepared by the Evaluation, Measurement, and Verification (EM&V) team for the Electric Utility Marketing Managers of Texas (EUMMOT). January 2015. This document has been made available to Texas investor-owned utilities through the EM&V team's SharePoint.
Age of replaced unit (years)	Remaining useful life (years)	Age of replaced unit (years)	Remaining useful life (years)
8	9.3	19	2.0
9	8.9	20	1.0
10	8.5	21 ¹⁰⁶	0.0
11	8.2		

Derivation of RULs

ACs have an estimated useful life of 18 years, and HPs have an estimated useful life of 15 years. This estimate is consistent with the age at which approximately 50 percent of ACs and HPs installed in a given year will no longer be in service, as described by the survival function in Figure 1 and Figure 2.

¹⁰⁶ See footnotes on default age from previous table.

¹⁰⁷ Department of Energy, Federal Register, 76 FR 37408, Technical Support Document: 8.2.3.5 Lifetime. June 2011. <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75</u>. Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0011-0012</u>.

Figure 2. Central and Mini-Split AC/HPs—HP Survival Function¹⁰⁸

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 1 and Figure 2. The age of the system being replaced is found on the horizontal axis, and the corresponding percentage of surviving system is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. The age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

¹⁰⁸ Ibid.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 18 years for an AC and 15 years for a HP unit based on the current DOE Final Rule standards for ACs and HPs.¹⁰⁹

This value is consistent with the EUL reported in the Department of Energy 76 Final Rule 37408 Technical Support Document for Energy Conservation Standards for Air Conditioners and Heat Pumps.¹¹⁰

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Decision/action type (early retirement, replace-on-burnout, new construction)
- Manufacturer, model, and serial number of newly installed unit
 - AHRI/DOE CCMS certificate or reference number matching manufacturer and model number
- Cooling capacity of the newly installed unit (Btuh)
- Heating capacity of the newly installed unit (Btuh) (HPs only)
- Seasonal energy efficiency ratio (SEER2) and energy efficiency ratio (EER2) of the newly installed unit
- Heating seasonal performance factor (HSPF2) of the newly installed unit (HPs only)
- Type of unit replaced (AC with gas furnace, AC with electric resistance furnace, air-source HP)
 - Baseline equipment used for savings (if different from unit replaced)
- Type of unit installed (central AC, central HP, dual-fuel HP, mini-split AC, mini-split HP, DC inverter AC, DC inverter HP)
- Unit type subcategory (split, packaged)

¹⁰⁹ Final Rule: Standards, Federal Register, 76 FR 37408 (June 27, 2011) and associated Technical Support Document.

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75. Download TSD at: http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0011-0012.

¹¹⁰ Department of Energy, Federal Register, 76 FR 37408, Technical Support Document: 8.2.3.5 Lifetime. June 2011.

- Compressor type for newly installed unit (single-stage, multi-stage, variable speed)
 - Recommended to assist with development of future deemed savings for variable-speed systems
- Age of the replaced unit (early retirement only unless default EUL is applied consistently across the program)
- Retired or replaced heating unit model number, serial number, manufacturer, and heating capacity (electric resistance only)
 - Photograph of retired heating unit nameplate, utility inspection, recording nameplate information, or other evaluator-approved approach. Sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Retired cooling unit model number, serial number, manufacturer, and cooling capacity (rightsizing or early retirement unless default EUL is applied consistently across the program)
- Manual J load calculation (rightsizing). See the Eligibility Criteria section for applicable scenarios.
- Photograph of retired cooling unit nameplate (required for all rightsizing projects and early retirement projects unless default age is applied consistently across the program)
 - If a photograph of the retired unit nameplate is unavailable or not legible, provide a photo and/or description documenting the reason why the nameplate photo was unobtainable (early retirement only)
 - If a photograph of the retired unit nameplate is unavailable or not legible, provide estimated square footage of conditioned area served by the retired unit (rightsizing only)
- Photograph demonstrating functionality of existing equipment and/or customer responses to survey questionnaire documenting the condition of the replaced unit and their motivation for measure replacement for early retirement eligibility determination (early retirement only). This requirement also applies to projects using the default age.
- For installed HVAC systems meeting minimum federal standard SEER2 efficiency:
 - o Age of existing equipment
 - Proof of functionality of existing equipment
 - o Rated SEER, if available
- If replacing an evaporative cooler, application should include a statement that the customer decision to change equipment types predates or is independent of the decision to install efficient equipment

- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or other pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 34. Central and Mini-Split AC/HPs—Revision History

TRM version	Date	Description of change
v10.0	10/2022	TRM v10.0 origin.
v11.0	10/2023	TRM v11.0 update. Defined rightsizing and documentation requirements. Updated early retirement age eligibility.

2.2.3 ENERGY STAR[®] Room Air Conditioners Measure Overview

TRM Measure ID: R-HV-RA Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Replace-on-burnout, early retirement, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

The following deemed savings values are applicable to the installation of a high-efficiency room air conditioner.

Eligibility Criteria

Installed room air conditioners (RACs) must be compliant with the current ENERGY STAR specification for RACs.

To claim early retirement savings, the replaced unit must be functioning at the time of removal with a maximum age of 12 years, coinciding with the point at which there is no assumed remaining useful life.

Baseline Condition

For new construction and replace-on-burnout, the baseline is assumed to be a new room air conditioning unit that is compliant with the current federal standard,¹¹¹ effective June 1, 2014. The standard refers to a revised efficiency rating, Combined Energy Efficiency Ratio (CEER), which accounts for standby/off-mode energy usage.

For early retirement, the baseline efficiency is assumed to match the minimum federal standard efficiencies in place prior to June 1, 2014. Since the effective date occurred mid-year, existing systems manufactured as of 2015 are not eligible for early retirement.

¹¹¹ Legacy DOE minimum efficiency standard for residential room air conditioners effective during current federal standard manufacturer lag period.<u>https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C/section-430.32</u>.

A new federal standard went into effect on August 30, 2023. However, this standard does not require manufacturer compliance until May 26, 2026.¹¹²

Reverse	Louvered		Federal standard prior to June 1, 2014	Federal standard as of June 1, 2014
cycle (yes/no)	sides (yes/no) Capacity (Btu/hr)		ER baseline EER	ROB/NC baseline CEER
No	Yes	< 6,000	9.7	11.0
		6,000-7,999	9.7	11.0
		8,000-13,999	9.8	10.9
		14,000-19,999	9.7	10.7
		20,000-27,999	8.5	9.4
		<u>></u> 28,000	8.5	9.0
No	No	< 6,000	9.0	10.0
		6,000-7,999	9.0	10.0
		8,000-10,999	8.5	9.6
		11,000-13,999	8.5	9.5
		14,000-19,999	8.5	9.3
		<u>></u> 20,000	8.5	9.4
Yes	Yes	< 20,000	9.0	9.8
		<u>></u> 20,000	8.5	9.3
Yes	No	< 14,000	8.5	9.3
		<u>></u> 14,000	8.0	8.7
Casement-	only	All capacities	8.7	9.5
Casement-	slider	All capacities	9.5	10.4

Table 35. RACs—Baseline Efficiencies for ER, ROB, and NC

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 5.0 Requirements for eligible room air conditioners effective October 30, 2023.¹¹³ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

¹¹² Current DOE minimum efficiency standard for residential room air conditioners. <u>https://www.regulations.gov/document/EERE-2014-BT-STD-0059-0057</u>.

¹¹³ ENERGY STAR Room Air Conditioners Final Version 5.0 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%205.0%20Room%20Ai</u> <u>r%20Conditioners%20Specification%20and%20Partner%20Commitments.pdf</u>.

Reverse cycle (Yes/No)	Louvered sides (Yes/No)	Capacity (Btu/hr)	Minimum CEER ¹¹⁴
No	Yes	< 6,000	13.1
		6,000-7,999	13.7
		8,000-13,999	14.7
		14,000-19,999	14.4
		20,000-27,999	12.7
		<u>></u> 28,000	12.2
No	No	< 6,000	12.8
		6,000-7,999	12.8
		8,000-10,999	13.0
		11,000-13,999	12.8
		14,000-19,999	12.6
		<u>></u> 20,000	12.7
Yes	Yes	< 20,000	13.2
		<u>></u> 20,000	12.6
Yes	No	< 14,000	12.6
		<u>></u> 14,000	11.7
Casement-only		All capacities	12.8
Casement-slider		All capacities	14.0

Table 36. RACs—Efficient Condition Requirements

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy and demand savings algorithms and associated input variables are listed below.

New Construction or Replace-on-Burnout

Energy Savings Algorithms

Energy Savings
$$[\Delta kWh] = Cap \times \frac{1 \ kW}{1,000 \ W} \times AOH_C \times \left(\frac{1}{CEER_{Base}} - \frac{1}{CEER_{RAC}}\right)$$

Equation 24

¹¹⁴ The updated ENERGY STAR specification discontinues the five percent energy credit for "connected functionality".

Where:

Сар	=	Rated equipment cooling capacity of the installed (Btu/hr)
AOH _C	=	Annual operating hours for cooling (Table 37)
CEER _{Base}	=	Combined energy efficiency ratio of the baseline cooling equipment (Table 35)
CEER _{RAC}	=	Combined energy efficiency ratio of the installed RAC

Table 37. RACs—Annual Operating Hours for Cooling¹¹⁵

Climate Zone	AOH _c
Zone 1: Amarillo	820
Zone 2: Dallas	1,374
Zone 3: Houston	1,308
Zone 4: Corpus Christi	2,150
Zone 5: El Paso	1,204

Demand Savings Algorithms

Summer Peak Demand Savings
$$[\Delta kW] = Cap \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{CEER_{Base}} - \frac{1}{CEER_{RAC}}\right) \times CF_S$$

Equation 25

Where:

 CF_{S} = Summer peak coincidence factor (Table 38)

Table 38. RACs—Coincidence Factor¹¹⁶

Season	CF
Summer ¹¹⁷	0.87

¹¹⁵ Association of Home Appliance Manufacturers (AHAM) Room Air Conditioner Cooling Calculator.

¹¹⁶ Coincidence factors calculated in accordance with the current peak definition are lower than expected for the Texas climate. Residential HVAC measures will temporarily revert to the coincidence factors used in TX TRM v4.0 before the change to the peak definition. These values will be reevaluated in upcoming TRM cycles to better align with the current peak definition.

¹¹⁷ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling dominated climates). Assuming that maximum cooling occurs during the peak period, the guideline leads to a coincidence factor of 1 / 1.15 = 0.87.

Early Retirement

Annual energy (kWh) and summer peak demand (kW) savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (EUL RUL).

Annual energy (kWh) savings are calculated by weighting the early retirement and replace-onburnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

Where:

RUL = Remaining useful life (see Table 39); if unknown, assume the age of the replaced unit is equal to the EUL resulting in a default RUL of 3 years

EUL = Estimated useful life = 10 years

Age of replaced unit (years)	RUL (years)	Age of replaced unit (years)	RUL (years)
1	8.0	8	5.0
2	7.2	9	4.0
3	6.2	10	3.0
4	5.2	11	2.0
5	5.2	12	1.0
6	5.2	13 ^{119,120}	0.0
7	5.2		

Table 39. RACs—RUL of Replaced Unit¹¹⁸

¹¹⁸ Current federal standard effective date is 6/1/2014. Since the effective date occurred mid-year, existing systems installed as of 2015 are not eligible to use the early retirement baseline and should instead use the ROB baseline.

¹¹⁹ RULs are capped at the seventy-fifth percentile of equipment age as determined based on DOE survival curves (see Figure 3). Systems older than this age should use the ROB baseline. See the January 2015 memo, "Considerations for Early Replacement of Residential Equipment," for further detail.

¹²⁰ Ward, B., Bodington, N., Farah, H., Reeves, S., and Lee, L. "Considerations for Early Replacement of Residential Equipment." Prepared by the Evaluation, Measurement, and Verification (EM&V) team for the Electric Utility Marketing Managers of Texas (EUMMOT). January 2015. This document has been made available to all Texas investor-owned utilities through the EM&V team's SharePoint.

Derivation of RULs

RACs have an estimated useful life of 10 years. This estimate is consistent with the age at which approximately 50 percent of the RACs installed in a given year will no longer be in service, as described by the survival function in Figure 3.

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 3. The age of the system being replaced is found on the horizontal axis, and the corresponding percentage of surviving system is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. The age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 3. The age of the room air conditioner being replaced is found on the horizontal axis, and the corresponding percentage of surviving RACs is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then, the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

¹²¹ Department of Energy, Federal Register, 76 FR 22454, Technical Support Document: 8.2.2.6 Product Lifetime. April 2011. <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/41</u>. Download TSD at: https://www.regulations.gov/document/EERE-2007-BT-STD-0010-0053.

Energy Savings Algorithms

For the RUL time period:

$$kWh_{savings,ER} = CAP \times \frac{1 \ kW}{1,000 \ W} \times AOH_C \times \left(\frac{1}{EER_{ER}} - \frac{1}{CEER_{RAC}}\right)$$

Equation 26

For the remaining time in the EUL period, calculate annual savings as you would for a replaceon-burnout project:

$$kWh_{savings,ROB} = Cap \times \frac{1 \ kW}{1,000 \ W} \times AOH_C \times \left(\frac{1}{CEER_{ROB}} - \frac{1}{CEER_{RAC}}\right)$$
Equation 27

Where:

$$EER_{ER}$$
 = Energy efficiency ratio of the early retirement baseline cooling equipment (Table 35)

Summer Demand Savings Algorithms

To calculate demand savings for the early retirement of a RAC, a similar methodology is used as for replace-on-burnout installations, with separate savings calculated for the remaining useful life of the unit, and the remainder of the EUL as outlined in the section above.

For the RUL time period:

$$kW_{Savings,ER} = CAP \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{EER_{ER}} - \frac{1}{CEER_{RAC}}\right) \times CF_S$$

Equation 28

For the remaining time in the EUL period, calculate annual savings as you would for a replaceon-burnout project:

$$kW_{Savings,ROB} = CAP \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{CEER_{ROB}} - \frac{1}{CEER_{RAC}}\right) \times CF_S$$

Equation 29

Where:

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4, for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of a room air conditioning unit is 10 years based on the Technical Support Document for the current DOE Final Rule standards for RACs.

This value is consistent with the EUL reported in the DOE Technical Support Document for RACs. $^{\rm 122}$

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Decision/action type (early retirement, replace-on-burnout, new construction)
- New unit manufacturer, model, and serial number
- ENERGY STAR certificate matching model
- Cooling capacity of the installed unit (Btu/hr)
- Combined energy efficiency ratio (CEER) of the new unit

¹²² Technical Support Document: Room Air Conditioners, June 2020, p. ES-14. <u>https://www.regulations.gov/document/EERE-2014-BT-STD-0059-0013</u>.

- Age of the replaced unit (early retirement only)
- Photograph of retired unit nameplate (early retirement)
 - If a photograph of the retired unit nameplate is unavailable or not legible, provide a photo and/or description documenting the reason why the nameplate photo was unobtainable (early retirement only)
- Photograph demonstrating functionality of existing equipment and/or customer responses to survey questionnaire documenting the condition of the replaced unit and their motivation for measure replacement for early retirement eligibility determination (early retirement only)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Low-income and hard-to-reach Market Transformation section merged with main measure as "early retirement" option. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. early retirement savings may be claimed through any appropriately designed program in accordance with EM&V team's memo, "Considerations for early replacement of residential equipment." Remaining useful lifetimes updated. Updated EUL to align with median lifetime. New construction permitted to claim savings. New ENERGY STAR standards incorporated.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v4.0	10/10/2016	TRM v4.0 update. Added RUL values for units with an age of one to three years. Added a default RUL value for when the age of the unit is unknown. Eliminated the eligibility requirement of the existing unit to have a minimum age of five years.

Table 40. RACs—Revision History

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 update. Updated peak coincidence factors for compliance with current Texas peak definition. Single coincidence factor replaced with individual factors for each climate zone.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Update to documentation requirements.
v8.0	10/2020	TRM v8.0 update. Clarified early retirement age eligibility.
v9.0	10/2021	TRM v9.0 update. Updated early retirement age eligibility. Clarified eligibility for units with connected functionality.
v10.0	10/2022	TRM v10.0 update. Update minimum CEER requirement for units with connected functionality. Updated coincidence factors, early retirement age eligibility, and documentation requirements.
v11.0	10/2023	TRM v11.0 update. Incorporated updated DOE final rule and ENERGY STAR specification v5.0. Updated early retirement age eligibility.

2.2.4 Packaged Terminal Heat Pumps Measure Overview

TRM Measure ID: R-HV-PT Market Sector: Residential Measure Category: HVAC Applicable Building Types: Multifamily Fuels Affected: Electricity Decision/Action Type: Replace-on-burnout, early retirement Program Delivery Type: Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This section presents the deemed savings methodology for the installation of packaged terminal heat pumps (PTHP) replacing packaged terminal air conditioners (PTAC) with electric resistance heat. This document covers assumptions made for baseline equipment efficiencies for early retirement (ER) and replace-on-burnout (ROB), based current and previous on efficiency standards. For ER, the actual age of the baseline system should be determined from the equipment nameplate or other physical documentation whenever possible. Default values are provided for when the actual age of the unit is unknown.

Applicable efficient measure types are restricted to packaged terminal heat pumps. Both standard and non-standard size equipment types are covered. *Standard size* refers to equipment with wall sleeve dimensions having an external wall opening greater than, equal to 16 inches high or greater than, or equal to 42 inches wide and a cross-sectional area greater than 670 in². *Non-standard size* refers to equipment with existing wall sleeve dimensions having an external wall opening of fewer than 16 inches high or fewer than 42 inches wide and a cross-sectional area less than 670 in².

Eligibility Criteria

Existing PTAC and installed PTHP must be the primary cooling source in the residence. Installed PTHPs must be compliant with the current commercial code.

ER projects must involve the replacement of a working system before natural burnout. Additionally, the ER approach cannot be used for projects involving a simultaneous renovation where a major structural change or internal space remodel has occurred. A ROB approach should be used for these scenarios.

Manufacturer datasheets for new equipment or documentation of AHRI or DOE CCMS certification must be provided.^{123,124}

¹²³ Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Directory: <u>https://www.ahridirectory.org/</u>.

¹²⁴ Department of Energy Compliance Certification Management System (DOE CCMS): <u>https://www.regulations.doe.gov/certification-data/</u>.

Baseline Condition

Early Retirement

Two baseline condition efficiency values are required for an ER scenario, one for the ER (RUL) period and one for the ROB (EUL – RUL) period. For the ROB period, the baseline efficiency is the same as for a ROB scenario. For the ER period, the baseline efficiency should be estimated according to the capacity, system type (PTAC), and age (based on year of manufacture) of the replaced system.¹²⁵ When the system age can be determined (from a nameplate, building prints, equipment inventory list, etc.), the baseline efficiency levels provided in Table 41, reflecting ASHRAE Standard 90.1-2001 through 90.1-2007, should be used. PTHPs replacing PTACs with built-in electric resistance heat should use a baseline heating efficiency of 1.0 COP.

When the system age is unknown, assume 15 years.¹²⁶ A default RUL may be used exclusively if applied consistently for all eligible early retirement projects. Otherwise, the default should only be used when a project is reported and documented as having a nameplate that is illegible.

Existing systems manufactured as of February 2013 are not eligible for early retirement.

Equipment	Cooling capacity (Btuh)	Baseline cooling efficiency (EER)	Baseline heating efficiency (COP) (no built-in resistance heat)	Baseline heating efficiency (COP) (replacing built-in resistance heat)
PTAC	< 7,000	11.0	_	1.0
	7,000-15,000	12.5 – (0.213 x Cap/1,000)		
	> 15,000	9.3		

Table 11 D	TUDA ED Dagali	no Efficiency I o	wala far Standar	d Cine DTA Cel27
1 able 41. P	I TPS-CK Dasell	ne Emiciency Le	vers for Standar	a Size PTAUS

¹²⁵ The actual age should be determined from the nameplate, building prints, equipment inventory list, etc. and whenever possible the actual source used should be identified in the project documentation.

¹²⁶ As noted in Docket 40885, page 14-15: Failure probability weights are established by assuming that systems for which age information will be unavailable are likely to be older, setting a minimum age threshold, and using the survival functions for the relevant system type to estimate the likelihood that an operational system is of a given age beyond that threshold. Baseline efficiency for each year of system age is established relative to program year. Baseline efficiency levels can be estimated for the next ten program years, considering increments in efficiency standards that took place in the historical period.

¹²⁷ ER only applies to standard size units because the minimum efficiency requirements for non-standard systems have never changed, making the ER baseline efficiency the same as for ROB.

Replace-on-Burnout

Table 42 provides minimum efficiency standards for PTAC/PTHP units and reflects the federal standards for packaged terminal airconditioners and heat pumps effective February 2013 and reflected in 10 CFR 431.

Equipment	Category	Cooling capacity (Btuh)	Minimum cooling efficiency (EER)	Minimum heating efficiency (COP)	Baseline heating efficiency (COP) (replacing built-in resistance heat)
PTHP	Standard size	< 7,000	11.9	3.3	1.0
Nc		7,000-15,000	14.0 - (0.300 x Cap/1,000)	3.7 – (0.052 x Cap/1,000)	
		>15,000	9.5	2.9	
	Non-standard size	<7,000	9.3	2.7	
		7,000-15,000	10.8 – (0.213 x Cap/1,000)	2.9 – (0.026 x Cap/1,000)	
		>15,000	7.6	2.5	

Table 42. PTHPS—ROB MINIMUM Efficiency Levels ¹²⁰ , 12

¹²⁸ IECC 2015 Table C403.2.3(3).

¹²⁹ Cap refers to the rated cooling capacity in Btuh. If the capacity is less than 7,000 Btuh, use 7,000 Btuh in the calculation. If the capacity is greater than 15,000 Btuh, use 15,000 Btuh in the calculation.

High-Efficiency Condition

The high-efficiency retrofits must exceed the minimum federal standards found in Table 42.

The high-efficiency retrofits must also meet the following criteria:¹³⁰

- For ER projects only, the installed equipment cooling capacity must be within 80 percent to 120 percent of the replaced electric cooling capacity.
- No additional measures are being installed that directly affect the operation of the cooling equipment (i.e., control sequences).

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Summer Peak Demand Savings
$$[kW] = \left(\frac{Cap_{C,pre}}{\eta_{baseline,C}} - \frac{Cap_{C,post}}{\eta_{installed,C}}\right) \times CF_S \times \frac{1 \ kW}{1,000 \ W}$$

Equation 30

Winter Peak Demand Savings
$$[kW] = \left(\frac{Cap_{H,pre}}{\eta_{baseline,H}} - \frac{Cap_{H,post}}{\eta_{installed,H}}\right) \times CF_W \times \frac{1 \ kW}{3,412 \ Btuh}$$

Equation 31

$$Total \ Energy \ Savings \ [kWh] = kWh_{C} + kWh_{H}$$

Equation 32

Cooling Energy Savings
$$[kWh_C] = \left(\frac{Cap_{C,pre}}{\eta_{baseline,C}} - \frac{Cap_{C,post}}{\eta_{installed,C}}\right) \times EFLH_C \times \frac{1 \ kW}{1,000 \ W}$$

Equation 33

$$Heating \ Energy \ Savings \ [kWh_H] = \left(\frac{Cap_{H,pre}}{\eta_{baseline,H}} - \frac{Cap_{H,post}}{\eta_{installed,H}}\right) \times EFLH_H \times \frac{1 \ kWh}{3,412 \ Btu}$$

Equation 34

¹³⁰ Modified from PUCT Docket #41070 for TRMv3 to limit replacement of only smaller-sized units and extend early retirement to cover PTAC/PTHP.

Where:

Сар _{С/Н,pre}	=	For ER, rated equipment cooling/heating ¹³¹ capacity of the existing equipment at AHRI standard conditions; for ROB & NC, rated equipment cooling/heating capacity of the new equipment at AHRI standard conditions [BTUH]; 1 ton = 12,000 Btuh
Cap _{C/H,post}	=	Rated equipment cooling/heating capacity of the newly installed equipment at AHRI standard conditions [Btuh]; 1 ton = 12,000 Btuh
$\eta_{\mathit{baseline},C}$	=	Cooling efficiency of existing (ER) or standard (ROB/NC) equipment [EER, Btu/W-h] (Table 41 through Table 42)
$\pmb{\eta}$ installed,C	=	Rated cooling efficiency of the newly installed equipment [EER, Btu/W-h] (must exceed minimum requirements from Table 42) ¹³²
$\eta_{\textit{baseline},H}$	=	Heating efficiency of existing (ER) or standard (ROB/NC) equipment [COP] (Table 41 through Table 42)
η installed,H	=	Rated heating efficiency of the newly installed equipment [COP] (must exceed minimum requirements from Table 42) ¹³³
CF _{S/W}	=	Summer/winter seasonal peak coincidence factor (Table 43)
EFLH _{C/H}	=	Cooling/heating equivalent full-load hours for newly installed equipment based on appropriate climate zone, building type, and equipment type [hours] (Table 44)

¹³¹ Baseline cooling capacity refers to the rated cooling capacity of the existing PTAC. Assume baseline heating capacity is equal to rated heating capacity for newly installed PTHP.

¹³² Rated efficiency is commonly reported at both 230 V and 208 V. Savings calculations should reference efficiency at 230 V, as AHRI rating conditions specify that voltage.

¹³³ Ibid.

Table 43. PTHPs—Coincidence Factors¹³⁴

Season	CF
Summer ¹³⁵	0.87
Winter ¹³⁶	0.83

Table 44. PTHPs—Cooling/Heating EFLHs¹³⁷

Climate zone	EFLHc	EFLH _H
Zone 1: Amarillo	1,142	1,880
Zone 2: Dallas	1,926	1,343
Zone 3: Houston	2,209	1,127
Zone 4: Corpus Christi	2,958	776
Zone 5: El Paso	1,524	1,559

The first-year savings algorithms in the above equations are used for all HVAC projects, across ROB and ER projects. However, ER projects require weighted savings calculated over both the ER and ROB periods taking the EUL and RUL into account. The ER savings are applied over the remaining useful life (RUL) period, and the ROB savings are applied over the remaining period (EUL – RUL). The final reported savings for ER projects are not actually a "first-year" savings, but an "average annual savings over the lifetime (EUL) of the measure." These savings calculations are explained in Volume 3, Appendix A.

Claimed Peak Demand Savings

A summer peak period value is used for this measure. Refer to Volume 1, Section 4for further details on peak demand savings and methodology.

¹³⁴ Coincidence factors calculated in accordance with the current peak definition are lower than expected for the Texas climate. Residential HVAC measures will temporarily revert to the coincidence factors used in TX TRM v4.0 before the change to the peak definition. These values will be reevaluated in upcoming TRM cycles to better align with the current peak definition.

¹³⁵ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling dominated climates). Assuming that maximum cooling occurs during the peak period, the guideline leads to a coincidence factor of 1 / 1.15 = 0.87.

¹³⁶ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling dominated climates). Based on AHRI data for 1.5–5 ton HVAC systems, the average ratio of rated heating capacity to cooling capacity is 0.96. Assuming that maximum heating occurs during the peak period and adjusting for the average ratio of heating to cooling capacity, the guideline leads to a coincidence factor of 0.96 / 1.15 = 0.83.

¹³⁷ ENERGY STAR Central AC/HP Savings Calculator. April 2009 update. <u>https://www.energystar.gov/sites/default/files/asset/document/ASHP_Sav_Calc.xls</u>.

Deemed Energy and Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Measure Life and Lifetime Savings

Estimated Useful Life (EUL)

The EUL is 15 years, as specified in as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID HVAC-PTHP.¹³⁸

Remaining Useful Life (RUL) for PTHP Systems

Annual energy (kWh) and summer peak demand (kW) savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (EUL RUL).

Annual energy (kWh) savings are calculated by weighting the early retirement and replace-onburnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

Where:

RUL	=	Remaining useful life (see Table 45); if unknown, assume the age of the replaced unit is equal to the EUL resulting in a default RUL of 2.8 years
EUL	=	Estimated useful life = 15 years

Default RUL may be used exclusively if applied consistently for all projects. Otherwise, the default should only be used when a project is reported and documented as having a nameplate that is illegible.

¹³⁸ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Age of replaced system (years)	PTAC RUL (Years)	Age of replaced system (years)	PTAC RUL (years)
1	14.0	10	5.7
2	13.0	11	5.0
3	12.0	12	4.4
4	11.0	13	3.8
5	10.0	14	3.3
6	9.1	15	2.8
7	8.2	16	2.0
8	7.3	17	1.0
9	6.5	1 8 ¹⁴¹	0.0

Table 45. PTHPs—RUL of Replaced PTAC^{139,140}

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

- Decision/action type: ROB or ER
- Climate zone or county
- Equipment configuration category: standard/non-standard
- Baseline equipment rated cooling capacity (Btuh)
- Baseline number of units
- Installed equipment rated cooling and heating capacities
- Installed number of units
- Installed cooling and heating efficiency rating
- Installed make and model
- AHRI/DOE CCMS certificate or reference number matching manufacturer and model number
- Baseline age and method of determination (e.g., nameplate, blueprints, customer reported, not available) (early retirement only)

¹³⁹ PUCT Docket No. 40083, Attachment A describes the process in which the RUL of replaced systems has been calculated.

¹⁴⁰ Current federal standard effective date is 2/2013. Existing systems manufactured after this date are not eligible to use the early retirement baseline and should instead use the ROB baseline.

¹⁴¹ RULs are capped at the seventy-fifth percentile of equipment age as determined based on DOE survival curves. Systems older than this age should use the ROB baseline. See the January 2015 memo, "Considerations for Early Replacement of Residential Equipment," for further detail.

- A representative sample of photographs of retired unit nameplate demonstrating model number, serial number, and manufacturer if blueprints are not provided (early retirement only)
 - If a photograph of the nameplate is unavailable or not legible, provide documentation demonstrating reason why the nameplate photo was unobtainable, including but not limited to a photo or description documenting the reason why the nameplate photo was unobtainable (alternate forms of documentation can be approved at the evaluator's discretion)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
- Documentation demonstrating the functionality of existing equipment, including but not limited to photograph demonstrating the functionality of existing equipment or customer responses to survey questionnaire documenting the condition of the replaced unit and their motivation for measure replacement for early retirement eligibility determination (early retirement only)

References and Efficiency Standards

Petitions and Rulings

- PUCT Docket 36779—Provides EUL for HVAC equipment.
- PUCT Docket 40083—Provides incorporation of early retirement savings for existing commercial HVAC SOP designs and updates for baseline equipment efficiency levels for ROB and new construction projects involving package and split systems.
- PUCT Docket 40885—Provides a petition to revise deemed savings values for commercial HVAC replacement measures. This petition updated demand and energy coefficients for all commercial HVAC systems.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. Clarified early retirement age eligibility. Added winter demand algorithm. Updated coincidence factors and documentation requirements
v9.0	10/2021	TRM v9.0 update. Clarified early retirement age eligibility. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Clarified electric resistance baseline. Updated coincidence factors and early retirement age eligibility.
v11.0	10/2023	TRM v11.0 update. Updated early retirement age eligibility.

Table 46. PTHPs—Revision History

2.2.5 ENERGY STAR[®] Ground Source Heat Pumps Measure Overview

TRM Measure ID: R-HV-GH Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Replace-on-burnout, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure requires the installation of a ground-source heat pump (GSHP) meeting the minimum requirements of ENERGY STAR geothermal heat pump key product criteria. Savings calculations are presented for systems with and without desuperheaters.

Eligibility Criteria

The deemed savings apply to units with a capacity of \leq 65,000 Btu/hour.

Energy savings for desuperheaters only apply if the desuperheater is attached to an electric storage water heater. The electric storage water heating cannot replace a gas water heater in a retrofit installation.

Baseline Condition

The baseline unit is assumed to be an air-source heat pump (ASHP) for new construction, and either an ASHP or an air conditioner with an electric resistance furnace for replace-on-burnout projects. New construction baseline efficiency values for ASHPs are compliant with the current federal minimum standard, effective January 1, 2023.¹⁴²

¹⁴² DOE minimum efficiency standard for residential air conditioners/heat pumps. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=48&action=viewlive</u>

For replace-on-burnout (ROB) projects, the cooling baseline is reduced to 13.7 SEER2. This value incorporates an adjustment to the baseline SEER2 value to reflect the percentage of current replacements that do not include the installation of an AHRI-matched system.¹⁴³ The heating baseline for replace-on-burnout projects is dependent on the heating type of the baseline equipment.

Project type	Cooling mode ¹⁴⁴	Heating mode ¹⁴⁵
New construction	9.8 EER2 (14.3 SEER2)	2.2 COP (7.5 HSPF2)
ROB—air source heat pump baseline	9.8 EER2 (13.7 SEER2)	2.2 COP (7.5 HSPF2)
ROB—air conditioner with electric resistance furnace baseline		1 COP (3.412 HSPF2)

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 3.2 requirements for eligible geothermal heat pumps effective January 1, 2012.¹⁴⁶ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Product type	Cooling mode (EER)	Heating mode (COP)
Closed loop water-to-air	17.1	3.6
Open loop water-to-air	21.1	4.1
Closed loop water-to-water	16.1	3.1
Open loop water-to-water	20.1	3.5
Direct geoexchange (DGX)	16.0	3.6

Table 48. GSHPs—ENERGY STAR Requirements

¹⁴³ Frontier Energy on behalf of the Electric Utility Marketing Managers of Texas (EUMMOT). "Petition to revise Existing Commission-Approved Deemed Savings Values for Central Air Conditioning and Heat Pump Systems: Docket No. 36780." Public Utility Commission of Texas. Approved August 27, 2009. <u>https://interchange.puc.texas.gov/</u>. Adapted for new 14 SEER baseline.

¹⁴⁴ The Central HP EER2 baseline is reduced to 9.8 EER2 for systems rated at 15.2 SEER2 or higher. While GSHPs do not have a SEER2 rating, all full-load EER minimum efficiency requirements exceed that threshold. Therefore, the reduced EER2 baseline is extended to all GSHP installations.

¹⁴⁵ Code specified HSPF value converted to COP using COP = HSPF x 1,055 J/Btu ÷ 3,600 J/W-h = HSPF ÷ 3.412.

¹⁴⁶ ENERGY STAR Program Requirements Product Specification for Geothermal Heat Pumps, v3.2. <u>https://www.energystar.gov/sites/default/files/Geothermal%20Heat%20Pump%20Version%203.2%20Final%20Specification.pdf</u>.

The specifications in the charts above apply to single-stage models. Multi-stage models may be qualified based on:¹⁴⁷

EER = (highest rated capacity EER + lowest rated capacity EER) / 2

Equation 35

COP = (highest rated capacity COP + lowest rated capacity COP) / 2

Equation 36

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Peak demand and annual energy savings for GSHP systems should be calculated, as shown below. Where a desuperheater is also installed, please see the Deemed Energy Savings Tables section for additional energy savings and the Deemed Summer Demand Savings Tables for additional demand savings.

Energy and demand savings for desuperheaters were adapted from a 2001 study conducted by Oak Ridge National Laboratory (ORNL) on GSHPs in Texas.¹⁴⁸ Desuperheater savings were calculated for each climate zone by taking the difference in savings between GSHPs with and without desuperheaters and averaging the savings between low and high-efficiency units. Savings for GSHP systems with desuperheaters should be calculated using the algorithms below with an additional energy credit based on the system capacity and efficiency.

The ORNL study draws from a 1998 analysis based on a study conducted at the Fort Polk Joint Readiness Training Center in Leesville, Louisiana. The Fort Polk study used calibrated simulations of 200 multifamily residences in the complex to estimate energy savings attributable to the replacement of air source heat pumps with GSHPs. These estimates were found to be within 5 percent of actual post-retrofit savings. Building models were developed using TRNSYS.¹⁴⁹

Using the Fort Polk models, the ORNL study assumed a baseline of a 1.5-ton, 10-SEER air source heat pump. Simulations of low-, medium-, and high-efficiency GSHPs with and without desuperheaters were compared against the baseline unit. The models were run using TMY-2 weather profiles for Climate Zones 1-4. Energy and demand differences between the pre- and post-retrofit models were used to estimate average savings per ton of cooling capacity.

¹⁴⁷ Geothermal Heat Pumps Key Product Criteria, <u>https://www.energystar.gov/products/heating_cooling/heat_pumps_geothermal/key_product_criteria</u>.

¹⁴⁸ Shonder, J. A., Hughes, P., and Thornton, J. Development of Deemed Energy and Demand Savings for Residential Ground Source Heat Pump Retrofits in the State of Texas. Transactions-American Society of Heating, Refrigerating, and Air Conditioning Engineers. 108, no. 1: 953-961, 2001.

¹⁴⁹ Klein, S. A. TRNSYS Manual: A Transient Simulation Program. Solar Engineering Laboratory, University of Wisconsin-Madison, Version 14.2 for Windows, September 1996.

In the 1998 analysis, low-efficiency GSHPs were assumed to be units with an EER of 12.4 and capacity of 19 kBtuh, while medium-efficiency units had an EER of 16.8 and capacity of 21 kBtuh. High-efficiency units had an EER or 18.3, with a capacity of 22 kBtuh.

These models were used to derive the energy and demand savings associated with installation of a desuperheater along with a GSHP, as shown in Table 51 and Table 52, respectively.

Energy Savings Algorithms

Total Energy Savings $[\Delta kWh] = kWh_{Savings,C} + kWh_{Savings,H} + kWh_{DSH}$

Equation 37

 $Cooling \ Energy \ Savings \ [kWh_C] = Cap_C \times \frac{1 \ kW}{1,000 \ W} \times EFLH_C \times \left(\frac{1}{SEER_{Base}} - \frac{1}{EER_{GSHP}}\right)$

Equation 38

$$Heating \ Energy \ Savings \ [kWh_H] = Cap_H \times \frac{1 \ kWh}{3,412 \ Btu} \times EFLH_H \times \left(\frac{1}{COP_{Base}} - \frac{1}{COP_{GSHP}}\right)$$

Equation 39

Where:

kWh _{DSH}	=	Energy savings (kWh) associated with installation of a desuperheater (see Table 51); these savings should only be added if a desuperheater is installed
Сар с/н	=	Rated equipment cooling/heating capacity of the installed GSHP (Btu/hr)
EFLH _{C/H}	=	Equivalent full load hours for cooling/heating (Table 49)
SEER2 _{Base}	=	Energy efficiency ratio of the baseline cooling equipment (Table 47)
EER _{GSHP}	=	Energy efficiency ratio of the installed GSHP
COP _{Base}	=	Coefficient of performance of the baseline heating equipment converted from HSPF2 (Table 47)
COP _{GSHP}	=	Coefficient of performance of the installed GSHP
Table 49. GSHPs—Equivalent Full Load Cooling/Heating Hours ¹⁵⁰		

Climate zone	EFLHc	EFLH _H
Zone 1: Amarillo	1,142	1,880
Zone 2: Dallas	1,926	1,343
Zone 3: Houston	2,209	1,127

¹⁵⁰ ENERGY STAR Central AC/HP Savings Calculator.

Climate zone	EFLHc	EFLH _H	
Zone 4: Corpus Christi	2,958	776	
Zone 5: El Paso	1,524	1,559	

Demand Savings Algorithms

Summer Peak Demand Savings
$$[\Delta kW]$$

= $Cap_C \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{EER_{Base}} - \frac{1}{EER_{GSHP}}\right) \times CF_S + kW_{DSH}$

Equation 40

Winter Peak Demand Savings
$$[\Delta kW] = Cap_H \times \frac{1 \, kWh}{3,412 \, Btu} \times \left(\frac{1}{COP_{Base}} - \frac{1}{COP_{GSHP}}\right) \times CF_W$$

Equation 41

Where:

EER2 _{Base}	=	Energy efficiency ratio of the baseline cooling equipment (see Table 47)
CF _{S/W}	=	Summer/winter peak coincidence factor (see Table 50)
k₩ _{DSH}	=	Summer demand savings (kW) associated with installation of a desuperheater (see Table 52); these savings should only be added if a desuperheater is installed

Table 50. GSHPs—Coincidence Factors ¹
--

Season	CF
Summer ¹⁵²	0.87
Winter ¹⁵³	0.83

¹⁵¹ Coincidence factors calculated in accordance with the current peak definition are lower than expected for the Texas climate. Residential HVAC measures will temporarily revert to the Coincidence factors used in TX TRM v4.0 before the change to the peak definition. These values will be reevaluated in upcoming TRM cycles to better align with the current peak definition.

¹⁵² Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Assuming that maximum cooling occurs during the peak period, the guideline leads to a coincidence factor of 1 / 1.15 = 0.87.

¹⁵³ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Based on AHRI data for 1.5–5 ton HVAC systems, the average ratio of rated heating capacity to cooling capacity is 0.96. Assuming that maximum heating occurs during the peak period and adjusting for the average ratio of heating to cooling capacity, the guideline leads to a coincidence factor of 0.96 / 1.15 = 0.83.

Deemed Energy Savings Tables

Climate zone	kWh/ton
Zone 1: Amarillo	612
Zone 2: Dallas	791
Zone 3: Houston	802
Zone 4: Corpus Christi	847
Zone 5: El Paso	791

Table 51. GSHPs—Energy Savings for Desuperheaters per Cooling Tonnage

Deemed Summer Demand Savings Tables

Table 52. GSHPs—Summer Peak Demand Savings for Desuperheaters per Cooling Tonnage

Climate zone	kW/ton
Zone 1: Amarillo	0.440
Zone 2: Dallas	0.405
Zone 3: Houston	0.405
Zone 4: Corpus Christi	0.410
Zone 5: El Paso	0.405

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Refer to Volume 1, Section 4 for further details on winter peak demand savings and methodology.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of a GSHP unit is 24 years.

This value is consistent with the life expectancy of the heat pump components reported in multiple Department of Energy GSHP guides. Underground ground-loop infrastructure is expected to last 25–50 years.^{154,155}

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Decision/action type (new construction, replace-on-burnout)
- Replaced unit heating type (heat pump, electric resistance furnace)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
- Manufacturer, model number, and serial number
- ENERGY STAR certificate matching installed model number
- Installed GSHP type (closed loop water-to-air, open loop water-to-air, closed loop water-to-water, open loop water-to-water, direct geoexchange)
- Energy efficiency ratio (EER) of the new unit
- Coefficient of performance (COP) of the new unit
- Product specification sheet
- Rated cooling and heating capacity of the new unit (Btu/hr)¹⁵⁶
- Whether a desuperheater was also installed or present
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or other pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

¹⁵⁴ Department of Energy. Geothermal Heat Pump Energy Saver article. <u>https://www.energy.gov/energysaver/geothermal-heat-pumps</u>.

¹⁵⁵ Department of Energy. "Guide to Geothermal Heat Pumps. February 2011. <u>http://www.energy.gov/sites/prod/files/guide_to_geothermal_heat_pumps.pdf</u>.

¹⁵⁶ Rated capacities are not specified on the ENERGY STAR certificate and should be taken from the product specification sheet.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table	53.	GSHPs-	-Revision	History
	•••			

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Updated by Frontier Energy, March 2014, based on new federal standards and alternative methodology.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. Updated peak coincidence factors for compliance with current Texas peak definition. Single coincidence factor replaced with individual factors for each climate zone.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updates to tracking requirements.
v8.0	10/2020	TRM v8.0 update. Updated algorithms to make units consistent.
v9.0	10/2021	TRM v9.0 update. Added clarifying language and updated algorithm units.
v10.0	10/2022	TRM v10.0 update. Updated coincidence factors and EUL.
v11.0	10/2023	TRM v11.0 update. Integrated federal standard change and SEER2 test procedure.

2.2.6 Large Capacity Split and Packaged Air Conditioners and Heat Pumps Measure Overview

TRM Measure ID: R-HV-LC Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to the installation of a split/packaged air conditioner (AC) or heat pump (HP) with a capacity exceeding that of a typical residential system (greater than or equal to 65,000 Btu/hr) in a retrofit or new construction application. This measure also applies to the installation of ground-source heat pumps (GSHP) with a capacity exceeding 65,000 Btu/hr.

Eligibility Criteria

- The deemed savings apply to central AC/HPs with a capacity of 65,000-240,000 Btu/hr (5.4-20 tons) and GSHPs with a capacity of 65,000-135,000 Btu/hr (5.4-11.3 tons).
- Equipment shall be properly sized to dwelling based on ASHRAE or ACCA Manual J standards.
- Manufacturer datasheets for new equipment or documentation of AHRI or DOE CCMS certification must be provided.^{157,158}

Baseline Condition

New construction and replace-on-burnout baseline efficiency levels are provided in Table 54 and Table 55. These baseline efficiency levels reflect the latest minimum efficiency requirements from the current federal manufacturing standard, IECC 2015, and ASHRAE 90.1-2013.

 ¹⁵⁷ Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Directory: <u>https://www.ahridirectory.org/</u>.
 ¹⁵⁸ Department of Energy Compliance Certification Management System (DOE CCMS): https://www.regulations.doe.gov/certification-data/.

System type	Capacity (tons)	Heating section type	Baseline efficiencies	Source ¹⁶⁰
Air conditioners	> 5.4 to < 11.3	None or	11.2 EER	DOE Standards/
		Electric resistance	12.8 IEER	IECC 2015
		All Other	11.0 EER	
			12.6 IEER	
	<u>></u> 11.3 to <u><</u> 20	None or	11.0 EER	
		Electric resistance	12.4 IEER	
		All other	10.8 EER	
			12.2 IEER	
Heat pump	5.4 to < 11.3	Heat pump	11.0 EER	DOE Standards/
(cooling) ¹⁶¹			12.0 IEER	IECC 2015
	<u>></u> 11.3 to <u><</u> 20		10.6 EER	
			11.6 IEER	
Heat pump (heating) ¹⁶²	5.4 to < 11.3	Heat pump	3.3 COP	DOE Standards/
	<u>></u> 11.3 to <u><</u> 20		3.2 COP	IECC 2015

Table 54. Large Capacity AC/HPs—NC/ROB Baseline Efficiency Levels for AC/HPs¹⁵⁹

¹⁵⁹ IECC 2015 Table C403.2.3(1) and C403.2.3(2).

¹⁶⁰ These baseline efficiency standards noted as "DOE Standards" are cited in the Code of Federal Regulations, 10 CFR 431.97. <u>http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec431-97.pdf</u>.

¹⁶¹ ASHRAE 90.1-2010 Table 6.8.1B. These systems larger than 5.4 tons, the minimum efficiency levels provided in this table are based on systems with heating type "No Heating or Electric Resistance Heating", excluding systems with "All Other Types of Heating".

¹⁶² Heat pump retrofits must also exceed the baseline efficiency levels for heating efficiencies.

Table 55. Large Capacity AC/HPs—NC/ROB Baseline Efficiency Levels for GSHPs¹⁶³

System type	Capacity (Btuh)	Cooling EWT rating condition	Minimum cooling EER	Heating EWT rating condition	Minimum heating COP
Water-to-air (water loop)	≥ 65,000 and < 135,000	86°F	13.0	68°F	4.3
Water-to-air (groundwater)		59°F	18.0	50°F	3.7
Brine-to-air (ground loop)		77°F	14.1	32°F	3.2
Water-to-water (water loop)		86°F	10.6	68°F	3.7
Water-to-water (groundwater)		59°F	16.3	50°F	3.1
Brine-to-water (ground loop)		77°F	12.1	32°F	2.5

High-Efficiency Condition

Split and packaged systems must exceed the minimum efficiencies specified in Table 54 and Table 55.

For reference, both ENERGY STAR and the Consortium for Energy Efficiency (CEE) offer suggested guidelines for high-efficiency equipment.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Total Energy Savings $[\Delta kWh] = kWh_{C} + kWh_{H}$

Equation 42

$$Cooling \ Energy \ Savings \ [kWh_{C}] = Cap_{C} \times \left(\frac{1}{\eta_{baseline,C}} - \frac{1}{\eta_{installed,C}}\right) \times EFLH_{C} \times \frac{1 \ kW}{1,000 \ W}$$

$$Heating \ Energy \ Savings \ [kWh_H] = Cap_H \times \left(\frac{1}{\eta_{baseline,H}} - \frac{1}{\eta_{installed,H}}\right) \times EFLH_H \times \frac{1 \ kWh}{3,412 \ Btu}$$

Equation 44

¹⁶³ Values from ASHRAE 90.1-2013.
Summer Peak Demand Savings
$$[\Delta kW] = Cap_C \times \left(\frac{1}{\eta_{baseline,C}} - \frac{1}{\eta_{installed,C}}\right) \times CF_S \times \frac{1 \ kW}{1,000 \ W}$$

Equation 45

Winter Peak Demand Savings
$$[\Delta kW] = Cap_H \times \left(\frac{1}{\eta_{baseline,H}} - \frac{1}{\eta_{installed,H}}\right) \times CF_W \times \frac{1 \ kW}{3,412 \ Btuh}$$

Equation 46

Where:

Сар _{С/Н}	=	Rated equipment cooling/heating capacity of the installed equipment at AHRI standard conditions (Btu/hr); 1 ton = 12,000 Btu/hr
η baseline,C	=	Cooling efficiency of standard equipment (Btuh/W)
$\pmb{\eta}$ installed,C	=	Rated cooling efficiency of the newly installed equipment (Btuh/W)
$\eta_{\mathit{baseline}, \mathit{H}}$	=	Heating efficiency of standard equipment (Btuh/W or COP)
$\eta_{\textit{installed},H}$	=	Rated heating efficiency of the newly installed equipment (Btuh/W or COP)

Note: Use EER for cooling kW and COP for heating kW and kWh savings calculations. SEER/IEER should be used to calculate cooling kWh for central ACs and HPs. EER should be used to calculate cooling kWh for GSHPs. Heating efficiencies expressed as HSPF will be approximated as a seasonal COP and should be converted using the following equation:

$$COP = \frac{HSPF}{3.412}$$

Equation 47

 CF_{SW} = Summer/winter peak coincidence factor (Table 56) EFLH_{C/H} = Cooling/heating equivalent full-load hours (Table 57)

Table 56. Large Capacity AC/HPs—Coincidence Factors¹⁶⁴

Season	CF
Summer ¹⁶⁵	0.87
Winter ¹⁶⁶	0.83

Table 57. Large Capacity AC/HPs—Equivalent Full Load Cooling/Heating Hours¹⁶⁷

Climate zone	EFLH _C	EFLH _H
Zone 1: Amarillo	1,142	1,880
Zone 2: Dallas	1,926	1,343
Zone 3: Houston	2,209	1,127
Zone 4: Corpus Christi	2,958	776
Zone 5: El Paso	1,524	1,559

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

¹⁶⁴ Coincidence factors calculated in accordance with the current peak definition are lower than expected for the Texas climate. Residential HVAC measures will temporarily revert to the coincidence factors used in TX TRM v4.0 before the change to the peak definition. These values will be reevaluated in upcoming TRM cycles to better align with the current peak definition.

¹⁶⁵ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Assuming that maximum cooling occurs during the peak period, the guideline leads to a coincidence factor of 1 / 1.15 = 0.87.

¹⁶⁶ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Based on AHRI data for 1.5–5 ton HVAC systems, the average ratio of rated heating capacity to cooling capacity is 0.96. Assuming that maximum heating occurs during the peak period and adjusting for the average ratio of heating to cooling capacity, the guideline leads to a coincidence factor of 0.96 / 1.15 = 0.83.

¹⁶⁷ ENERGY STAR Central AC/HP Savings Calculator. April 2009 update. <u>https://www.energystar.gov/sites/default/files/asset/document/ASHP_Sav_Calc.xls</u>.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 18 years for a large-capacity air conditioner and 15 years for a large capacity heat pump based on the current DOE Final Rule standards for central heat pumps.¹⁶⁸ The EUL of a high-efficiency ground source heat pump unit is 24 years, consistent with the EUL reported in the DOE GSHP guide.¹⁶⁹

These values are consistent with the life expectancy of the heat pump components reported in multiple DOE GSHP guides. Underground ground-loop infrastructure is expected to last 25–50 years. ^{170,171}

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Decision/action type (new construction, retrofit)
- Cooling and heating capacities (Btu/hr)
- Full-load efficiency rating (EER) of the installed unit
- Part-load efficiency rating (SEER/IEER) of the installed unit (if applicable)
- Coefficient of Performance (COP) of the unit installed (heat pumps and GSHPs only)
- Proof of purchase with date of purchase and quantity
- Alternative: photo of unit installed or other pre-approved method of installation verification

¹⁶⁸ Final Rule: Standards, Federal Register, 76 FR 37408 (June 27, 2011) and associated Technical Support Document.

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=75.

¹⁶⁹ Department of Energy. ["]Guide to Geothermal Heat Pumps. February 2011. <u>http://www.energy.gov/sites/prod/files/guide_to_geothermal_heat_pumps.pdf</u>.

¹⁷⁰ Department of Energy. Geothermal Heat Pump Energy Saver article. <u>https://www.energy.gov/energysaver/geothermal-heat-pumps</u>.

¹⁷¹ Department of Energy. "Guide to Geothermal Heat Pumps. February 2011. <u>http://www.energy.gov/sites/prod/files/guide to geothermal heat pumps.pdf</u>.

- Manufacturer, model, capacity, and serial number
- AHRI/DOE CCMS certificate or reference number matching manufacturer and model number

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

	Table	so: Large capacity Aorni 3—Revision history
TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Measure removed from TRM.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. Consolidated AC and HP measures and reintroduced to TRM. Extended measure applicability to GSHPs. Updated from deemed savings to algorithm approach.
v7.0	10/2019	TRM v7.0 update. Updated documentation requirements.
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors
v9.0	10/2021	TRM v9.0 update. Updated baseline efficiency table to remove categories applicable to larger capacity ranges. Added GSHP coincidence factors.
v10.0	10/2022	TRM v10.0 update. Updated coincidence factors.
v11.0	10/2023	TRM v11.0 update. Updated GSHP EUL.

Table 58. Large Capacity AC/HPs—Revision History

2.2.7 Evaporative Cooling Measure Overview

TRM Measure ID: R-HV-EC Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculations Savings Methodology: Engineering algorithms and estimates

Measure Description

The following deemed savings values are applicable in calculating an incentive for the installation of a direct evaporative cooler instead of a refrigerated air system in an existing or new construction home in a dwelling occupied by a residential energy consumer.

Eligibility Criteria

Direct whole-house evaporative cooling systems with a saturation efficiency of 0.85 or greater are eligible for this measure. Portable, window, indirect, and hybrid systems are not eligible.

Baseline Condition

The baseline condition is a new refrigerated air conditioner with a rated efficiency at 14 SEER, the federal minimum standard.¹⁷² The system being replaced is likely to be a less efficient evaporative cooling system, but the alternative to the new evaporative cooling unit is a minimally efficient refrigerated air conditioning system.

High-Efficiency Condition

The high efficiency condition is a direct evaporative cooling system with a saturation efficiency of at least 0.85.

¹⁷² DOE minimum efficiency standard for residential air conditioners/heat pumps. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=48&action=viewlive.</u>

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Deemed savings for this measure were derived using a reference metering study of evaporative cooling projects for Xcel Energy.¹⁷³ The energy savings from the Xcel study are adjusted for climate using a cooling degree day (CDD) ratio derived from TMY 2020 weather data.¹⁷⁴ Demand savings are calculated using the coincidence factor for the room air conditioner measure and an EFLH estimation simulated in a calibrated BEopt model that is used for other modeled measures in the Texas TRM.

Energy Savings Algorithms

$$kWh_{Savings} = kWh_{Ref} \times \left(\frac{CDD_{Site}}{CDD_{Ref}}\right)$$

Equation 48

Where:

kWh _{Ref}	=	Reference kWh savings from Xcel Energy metering evaluation of evaporative cooling project in Grand Junction, CO: 2,041
	=	Cooling degree days for the reference location of Grand Junction, CO: 1,452
CDD _{Site}	=	Cooling degree days for the project site location, El Paso, TX: 2,446

Demand Savings Algorithms

Summer Peak Demand Savings $[\Delta kW] = \frac{kWh_{Savings}}{EFLH_{Site}} \times CF_S$

Equation 49

¹⁷³ Evaporative Cooling Rebate Program Evaluation by The Cadmus Group, Inc., January 2010, Page 64, Table 23, Savings kWh value for Grand Junction Tier 2. <u>https://www.xcelenergy.com/staticfiles/xe/Regulatory/Regulatory%20PDFs/EvaporativeCoolingProgramEvaluation.pdf</u>.

¹⁷⁴ NSRDB Viewer: <u>https://nsrdb.nrel.gov/</u>.

Where:

EFLH _{Site}	=	Equivalent full-load hours of an evaporative cooling system for the project site location, El Paso, TX: 1,288 ¹⁷⁵
CFs	=	Summer coincidence factor ¹⁷⁶ = 0.87

Deemed Savings Tables

Table 59. Evaporative Cooling—Deemed Savings per System

Climate zone	kWh savings	Summer kW savings	Winter kW savings
5	3,438	2.46	0

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 15 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID HV-Evap.¹⁷⁷

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Retired system model number and serial number (if applicable)
- Installed evaporative cooler model number and serial number
- Installed evaporative cooler saturation effectiveness

¹⁷⁵ EFLH are calculated as the total annual kilowatt-hours divided by the max kilowatt value output by the BEopt model.

¹⁷⁶ Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat pumps be sized at 115 percent of the maximum cooling requirement of the residence (for cooling-dominated climates). Assuming that maximum cooling occurs during the peak period, the guideline leads to a coincidence factor of 1 / 1.15 = 0.87.

¹⁷⁷ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or other pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. No revision
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated CDD reference.
v11.0	10/2023	TRM v11.0 update. No revision

Table 60. Evaporative Cooling—Revision History

2.2.8 ENERGY STAR[®] Connected Thermostats Measure Overview

TRM Measure ID: R-HV-CT Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering spreadsheets and estimates

Measure Description

Deemed savings are provided for the replacement of a standard or programmable thermostat with an ENERGY STAR connected thermostat.

Eligibility Criteria

All residential customers with refrigerated air conditioning are eligible to claim cooling savings for this measure. Customers must have electric central heating (either an electric resistance furnace or a heat pump) to claim heating savings.

The connected thermostats measure is primarily a residential retrofit measure; savings are presented for the average efficiency ratings of installed HVAC systems. Deemed savings are also presented for new construction efficiency ratings (minimum efficiency set by Federal standards).

Customers should be advised against using the emergency heat (EM HEAT) setting on heat pump thermostats. This setting is meant only for use in emergency situations when the heat pump is damaged or malfunctioning. Supplemental heating automatically kicks on in below-freezing conditions using the regular HEAT setting. Contractors installing a new heat pump thermostat with equipment install shall advise customer of correct thermostat usage.

Customers that receive incentives for purchasing a thermostat device through an energy efficiency program may be able to enroll in the load management program offered by the utility at the point of purchase. Deemed demand savings can only be claimed for those customers if they participate in the peak demand events. Otherwise, these devices are only eligible for the deemed energy efficiency savings.

Baseline Condition

The baseline condition is a residential central HVAC system controlled by a thermostat that does not meet the criteria for a connected thermostat (see high efficiency condition). For connected thermostats installed in conjunction with an existing HVAC unit, the baseline condition is an HVAC unit controlled by a manual or programmable thermostat with an average efficiency for existing HVAC units in Texas estimated as shown in Table 61.

Project type	Capacity (Btu/hr)	Cooling mode
Split air conditioners	< 45,000	14.3 SEER2
(manufactured as of 1/1/2023)	<u>></u> 45,000	13.8 SEER2
Packaged air conditioners (manufactured as of 1/1/2023)	All	13.4 SEER2
Split/packaged air conditioners (manufactured 1/1/2015 through 12/31/2022)	All	12.8 SEER2
Split/packaged air conditioners (when age is unknown) ¹⁷⁸	All	12.3 SEER2
Split/packaged air conditioners (manufactured 1/23/2006 through 12/31/2014)	All	11.9 SEER2
Split/packaged air conditioners (manufactured before 1/23/2006)	All	9.1 SEER2

Table 61. Connected Thermostats—Baseline Efficiency of Existing ACs

Table 62. Connected Thermostats—Baseline Efficiency of Existing HPs

Project type	Cooling mode	Heating mode
Split heat pumps (manufactured as of 1/1/2023)	14.3 SEER2	7.5 HSPF2
Packaged heat pumps (manufactured as of 1/1/2023)	13.4 SEER2	6.7 HSPF2
Split heat pumps (manufactured 1/1/2015 through 12/31/2022)	12.8 SEER2	6.9 HSPF2
Packaged heat pumps (manufactured 1/1/2015 through 12/31/2022)	12.8 SEER2	6.7 HSPF2
Split heat pumps (when age is unknown) ¹⁷⁹	12.3 SEER2	6.7 HSPF2
Packaged heat pumps (when applying default age) ¹⁸⁰	12.3 SEER2	6.6 HSPF2

¹⁷⁸ Baseline efficiencies are calculated by taking the average the early retirement categories for 2006–2014 and 2015–2022.

¹⁷⁹ Baseline efficiencies are calculated by taking the average the early retirement categories for 2006–2014 and 2015–2022.

¹⁸⁰ Ibid.

Project type	Cooling mode	Heating mode
Split/packaged heat pumps (manufactured 1/23/2006 through 12/31/2014)	11.9 SEER2	6.5 HSPF2
Split/packaged heat pumps (manufactured before 1/23/2006)	9.1 SEER2	5.7 HSPF2
Electric resistance furnace	_	3.412 HSPF2

For connected thermostats installed in conjunction with a new HVAC unit (for both retrofit and new construction applications), the baseline condition is an HVAC unit controlled by a manual or programmable thermostat with the baseline HVAC unit efficiency being equal to the efficiency of the installed system. The efficiency ratings of newly installed HVAC units should meet or exceed minimum values set by the federal manufacturing standards in effect at the time of the installation.

High-Efficiency Condition

The high-efficiency condition is an HVAC unit being controlled by a connected thermostat compliant with the ENERGY STAR Final Version 1.0 requirements for eligible connected thermostats effective December3, 2016.¹⁸¹ A list of eligible thermostats is available on the ENERGY STAR website.¹⁸² Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Energy and Demand Savings Methodology

Energy savings are estimated according to the program requirements established by the ENERGY STAR program for thermostat service providers seeking certification. In addition to a series of other technical and programmatic requirements, providers must demonstrate that their thermostat services result in significant run-time reductions for the controlled cooling and heating equipment. Specifically, ENERGY STAR provides the runtime reduction criteria reproduced in Table 63.

ENERGY STAR runtime reductions are translated to energy savings using the methodologies defined in the Central and Mini-Split Air Conditioners and Heat Pumps measure.

Demand (kW) savings are not estimated for the Connected Thermostats measure.

¹⁸¹ ENERGY STAR Program Requirements Product Specification for Connected Thermostats, v1.0. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Program%20Requirements%20for%20Connected%20Thermostats%20Version%201.0.pdf</u>.

¹⁸² ENERGY STAR Certified Products: ENERGY STAR Certified Smart Thermostats. Online. Available: <u>https://www.energystar.gov/productfinder/product/certified-connected-thermostats/results</u>.

Table 05. Connected Thermostats—Runtime Reduction Criteria for ENERGT STAR Certification
--

Metric	Statistical measure	Performance requirement
Annual percentage run time reduction, cooling	Lower 95 percent confidence limit of weighted national average	≥ 10 percent
	Weighted national average of 20 th percentiles	≥ 5 percent
Annual percentage run time reduction, heating	Lower 95 percent confidence limit of weighted national average	≥ 8 percent
	Weighted national average of 20 th percentiles	≥ 4 percent
Average resistance heat utilization for heat pump installations	National mean in 5°F outdoor temperature bins from 0 to 60°F	Reporting requirement

Savings Algorithms and Input Variables

Energy and demand savings algorithms and associated input variables are listed below.

Energy Savings Algorithms

Total Energy Savings
$$[\Delta kWh] = kWh_C + kWh_H$$

Equation 50

$$Cooling \ Energy \ Savings \ [kWh_C] = \frac{Cap_C}{\eta_C} \times EFLH_C \times \frac{1 \ kW}{1,000 \ W} \times CRF$$

Equation 51

Heating Energy Savings
$$[kWh_H] = \frac{Cap_H}{\eta_H} \times EFLH_H \times \frac{1 \ kW}{1,000 \ W} \times HRF$$

Equation 52

Where:

Сар _{С/Н}	=	HVAC equipment cooling/heating capacity. For thermostats installed on existing equipment, use the nominal tonnage converted to nominal capacity. For thermostats installed with a new HVAC system, use the AHRI rated capacity of the new equipment. [Btuh]; 1 ton = 12,000 Btuh
ης	=	HVAC equipment cooling efficiency. For thermostats installed on existing equipment, default to the code SEER2 rating from Table 61 for ACs and Table 62 for HPs. For thermostats installed with a

new HVAC system, use the AHRI SEER2 rating of the new

equipment. [Btuh/W]

ηн	=	HVAC equipment heating efficiency. For thermostats installed on existing equipment, default to the code HSPF2 from Table 62. For thermostats installed with a new HVAC system, use the AHRI HSPF2 rating of the new equipment. [Btuh/W]
EFLH _{C/H}	=	Cooling/heating equivalent full-load hours (Table 64)
CRF	=	Cooling hours reduction factor = 10% (Table 63)
HRF	=	Heating hours reduction factor = 8% (Table 63)

Table 64. Connected Thermostats—Equivalent Full Load Cooling/Heating Hours¹⁸³

Climate zone	EFLHc	EFLH _H
Zone 1: Amarillo	1,142	1,880
Zone 2: Dallas	1,926	1,343
Zone 3: Houston	2,209	1,127
Zone 4: Corpus Christi	2,958	776
Zone 5: El Paso	1,524	1,559

Deemed Energy Savings Tables

Deemed savings tables are only provided for connected thermostats installations where the cooling and heating equipment is unspecified. Savings are presented in kWh per thermostat, assuming a default of 3.7 tons.¹⁸⁴

The following table describes various equipment replacement scenarios that may be encountered and specifies which baseline should be used in each case.

Table 65. Connected	Thermostats—Baseline fo	r Various Equipment	Replacement Scenarios

	Baseline		
Equipment replacement scenario	Cooling	Heating	
No HVAC equipment replacement	Existing	Existing	
Non-condenser replacements (e.g., coil or furnace ONLY)	Existing	Existing	
Air conditioner condenser replacement with gas furnace	New	No savings	
Air conditioner condenser replacement with electric heat	New	Existing	
Heat pump condenser replacement	New	New	

¹⁸³ ENERGY STAR Central AC/HP Savings Calculator.

¹⁸⁴ Based on review of average reported cooling capacity for central air conditioners and heat pumps installed in Texas utility programs in previous program years.

For upstream programs, assume a heating type weighting of 41.8 percent gas, 49.3 percent electric resistance, and 9.0 percent heat pump heat.¹⁸⁵

Table 66. Connected Thermostats—Energy Savings for Thermostats Installed on Unspecified Existing HVAC¹⁸⁶ (kWh/thermostat)

Climate zone	Total energy savings
Zone 1: Amarillo	1,549
Zone 2: Dallas	1,507
Zone 3: Houston	1,479
Zone 4: Corpus Christi	1,537
Zone 5: El Paso	1,493

Deemed Summer Demand Savings Tables

Summer demand savings shall not be claimed for the connected thermostats measure.

Deemed Winter Demand Savings Tables

Winter demand savings shall not be claimed for the connected thermostats measure.

Claimed Peak Demand Savings

Not applicable.

Example Deemed Savings Calculation

Example 1. A direct installed connected thermostat is installed on an existing 3.5 ton split air conditioner manufactured in 2015 in Climate Zone 2.

Cooling Energy Savings $= \frac{3.5 \times 12,000 \times 1,926 \times 0.10}{12.8 \times 1,000} = 632 \, kWh$ Heating Energy Savings $= 0 \, kWh$ Total kWh Savings $= 632 + 0 = 632 \, kWh$ Summer Peak Demand Savings $= 0 \, kW$ Winter Peak Demand Savings $= 0 \, kW$

¹⁸⁵ Residential Energy Consumption Survey (RECS) 2015: Space heating in homes in the South and West Regions (HC6.8), February 27, 2017. <u>https://www.eia.gov/consumption/residential/data/2015/</u>.

¹⁸⁶ Assuming smart thermostat is installed in conjunction with an existing 3.7-ton HVAC unit.

Example 2. A direct install connected thermostat is installed with a new 5 ton split heat pump rated at 56,000 cooling Btuh, 55,000 heating Btuh, 15.2 SEER2 and 8 HSPF2 in Climate Zone 3.

Cooling Energy Savings = $\frac{56,000 \times 2,209 \times 0.10}{15.2 \times 1,000} = 814 \, kWh$ Heating Energy Savings = $\frac{55,000 \times 1,127 \times 0.08}{8 \times 1,000} = 620 \, kWh$

Total kWh Savings = 814 + 620 = 1,434 *kWh*

Summer Peak Demand Savings = 0 kW

Winter Peak Demand Savings = 0 kW

Example 3. A midstream/upstream connected thermostat is installed in Climate Zone 4.

Total kWh Savings = 1,537 kWh

Summer Peak Demand Savings = 0 kW

Winter Peak Demand Savings = 0 kW

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 11 years as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID HV-ProgTstat.¹⁸⁷

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

All program types:

- Climate zone or county
- Thermostat quantity sold/installed
- Thermostat manufacturer and model number
- Copy of ENERGY STAR certificate matching model number

¹⁸⁷ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Additional requirements for all program types other than upstream/midstream:

- HVAC system type (AC/HP)
- Determine whether HVAC condenser was replaced in conjunction with the thermostat
- If installed with existing HVAC equipment:
 - HVAC capacity (Btuh): Nominal tons converted to capacity
 - Manufacture year
- If installed with new HVAC system:
 - HVAC capacity (Btuh): AHRI rated capacity
 - Part-load cooling efficiency (SEER2)
 - Full-load cooling efficiency (EER2)
 - Heating efficiency (HSPF2) HPs only
 - Heating type (gas, electric resistance, heat pump, none)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

 Docket No. 48265. Petition of AEP Texas Inc., CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company. Petition to Approve Deemed Savings for New Nonresidential Door Air Infiltration, Nonresidential Door Gaskets, and Residential ENERGY STAR Connected Thermostats. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v6.0	11/2018	TRM v6.0 origin.
v7.0	10/2019	TRM v7.0 revision. Updated documentation requirement.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. Provided guidance about emergency heat settings and updated EUL reference. Added clarification to prevent double counting of savings with smart thermostat load management measure.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. Incorporated algorithm approach. Incorporated new SEER2 test procedure.

Table 67. Connected Thermostats—Revision History

2.2.9 Smart Thermostat Load Management Measure Overview

TRM Measure ID: R-HV-TD Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Measurement and verification

Measure Description

Deemed demand savings are provided for calling load management events on smart thermostats¹⁸⁸ in summer afternoons. A load management event is a process through which a utility may optimize available resources by sending a signal to customers' smart thermostats. The signal modifies the smart thermostats temperature setting to reduce overall load demand from central refrigerated air conditioning.

Eligibility Criteria

All Texas residential customers with smart thermostats participating in Climate Zone 5 load management events are eligible to claim demand savings for this measure.

Customers that receive incentives for purchasing a thermostat device through an energy efficiency program may be able to enroll in the load management program offered by the utility at the point of purchase. Deemed demand savings can only be claimed for those customers if they participate in the peak demand events. Otherwise, these devices are only eligible for the deemed energy efficiency savings.

Baseline Condition

The baseline condition is a heating, ventilation, and air conditioning (HVAC) unit operating in the absence of the load management event and subsequent load management activities.

High-Efficiency Condition

The high-efficiency condition is an HVAC unit being controlled by a smart thermostat and participating in a load management event.

¹⁸⁸ In this case, smart thermostats are internet-enabled devices that control a home's heating and air conditioning and can be remotely controlled by El Paso Electric Company for load management events.

Energy and Demand Savings Methodology

Demand savings were calculated using the "High 3 of 5 Baseline with Day-of Adjustment" method adopted in the Texas Technical Reference Manual Version 5.0 (TRM 5.0). This method considered the five most recent non-event non-holiday weekdays preceding an event and used data from the three days with the highest load within those five days to establish the baseline. "Day-of" adjustments were used to scale the baseline load estimate to the load conditions on the day of the event using data from the two hours prior to the time on the event day when participants were notified of the pending call for curtailment. In this specific program, customers were likely to experience a pre-cool period lasting up to one hour prior to the event. Therefore, the adjustment period was set as the two-hour period three hours prior to the event.

Interval metering devices were installed on a sample of households to record 15-minute interval kW demand of each house. Consumption data were recorded for a total of 50 homes in Texas. Among these 50 homes, 43 have un-anonymized thermostat run-time data, which allow linking interval consumption data with run-time data for each home. Data for customers in the sample was recorded beginning June 23, 2017. The deemed demand savings presented below were derived from these 43 homes in the summer 2018 data.

Event-level savings are calculated by multiplying kW savings per device by the number of participating devices for each event. Devices that participated no less than 50 percent of the total event duration are identified as participating devices. The average of the events' savings represents the program year savings.

Energy savings are not estimated through this specific measure.

Savings Algorithms and Input Variables

The demand algorithms and associated input variables are listed below:

Summer Peak Demand Savings $[\Delta kW] = Baseline Period kW - Curtailment kW$

Equation 53

Where:

Baseline Period kW	=	Baseline average demand calculated according to the High 3 of 5 Baseline Method
Curtailment kW	=	Average demand measured during the curtailment period

Deemed Energy Savings Tables

Energy savings shall not be claimed using the methodology described in this measure.

Deemed Summer Demand Savings Tables

Table 68. Smart Thermostat Load Management—Deemed kW Savings per Device

Climate zone	kW/device
5	1.45

Deemed Winter Demand Savings Tables

Winter demand savings shall not be claimed using the methodology described in this measure.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4, for further details on peak demand savings and methodology.

Example Deemed Savings Calculation

Example 1. A smart thermostat is installed in a home participating in summer load management events:

Summer kWsavings = 1.45 kW Winter kW savings = 0 kW kWh savings = 0 kWh

Example 2. Suppose ten events were called in an entire summer with participation counts listed in the table below. The total program year demand savings would be the average of the event-level savings.

Table 69. Smart Thermostat Load Management—Example Total Program Year Savings Calculation

	Texas		
Event number	Deemed savings per device (kW)	Participating device number	Event-level demand savings (kW)
Event 1	1.45	600	870
Event 2	1.45	671	973
Event 3	1.45	744	1,079
Event 4	1.45	819	1,188
Event 5	1.45	868	1,259
Event 6	1.45	975	1,414
Event 7	1.45	826	1,198
Event 8	1.45	910	1,320
Event 9	1.45	804	1,166
Event 10	1.45	704	1,021
Total program year demand savings (kW):			1,149

Measure Life and Lifetime Savings

The estimated useful life (EUL) is one year for smart thermostat load management.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- A list of all load management events affecting residential participants, describing their date, the time the event started, and the time the event ended.
- List of targeted smart thermostats in each event and unique identifier for each device.
- Participation status for targeted thermostats (e.g., participant and non-participant as described below), runtime data, or other information to assign participation status (e.g., duration of participation, offline, opted-out).
 - Participants are smart thermostats that participated no less than 50 percent of the total event duration.
 - Devices that opted out after participating for no less than 50 percent of the total event duration may be included in the participants list for that specific event.
 - All other devices that participated for less than 50 percent of the total event duration or were offline are considered non-participants and should be excluded from the participants list and savings calculation for that event.

Summary of savings calculations and rounding practices.

 Data rounding to the nearest whole number should only occur at the event and program levels for residential load management programs (NOT at the customer level). Utilities that prefer not to round the savings should document that in their calculations and inform the EM&V team (see Volume 5 section 3.1 for more details).

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

		-
TRM version	Date	Description of change
v6.0	11/2018	TRM v6.0 origin.
v7.0	10/2019	TRM v7.0 update. Updates to calculated savings.
v8.0	10/2020	TRM v8.0 update. Updated description and tracking requirements.
v9.0	10/2021	TRM v9.0 update. Added clarification to prevent double counting of savings with smart thermostat load management measure.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 70. Smart Thermostat Load Management—Revision History

2.2.10 Duct Sealing Measure Overview

TRM Measure ID: R-HV-DS Market Sector: Residential Measure Category: HVAC Applicable Building Types: Single-family, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

This measure involves sealing leaks in supply and return ducts of the HVAC distribution systems in homes or converted residences with central air conditioning. The standard approach to estimate savings in this measure is based on the results obtained via pre- and post-leakage testing as defined in this measure. In lieu of leakage testing, savings for eligible duct sealing projects may be claimed using the alternate approach specified in this measure.

Eligibility Criteria

All single-family customers with ducted central refrigerated air conditioning or evaporative cooling are eligible to claim cooling savings for this measure. Customers must have ducted central heating with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. The specified deemed savings are not applicable to multifamily customers or to residences with space (non-central or ducted) air conditioning or heating.

For the standard approach with leakage testing, duct leakage should be assessed following the Building Performance Institute (BPI) standards. Duct leakage testing should not be conducted in homes where either evidence of asbestos or mold is present or suspected due to the age of the home.¹⁸⁹

¹⁸⁹ "Technical Standards for the Building Analyst Professional", Building Performance Institute (BPI), v1/4/12, Page 1 of 17, states:

[&]quot;Health and Safety: Where the presence of asbestos, lead, mold and/or other potentially hazardous material is known or suspected, all relevant state and federal (EPA) guidelines must be followed to ensure technician and occupant safety. Blower door depressurization tests may not be performed in homes where there is a risk of asbestos becoming airborne and being drawn into the dwelling." http://www.bpi.org/sites/default/files/Technical%20Standards%20for%20the%20Building%20Analyst% 20Professional.pdf.

Utility program manuals should be consulted for health and safety considerations related to the implementation of duct efficiency measures and/or testing procedures.

Duct sealing is a residential retrofit measure only and does not apply to new construction.

Baseline Condition

The savings calculation methods for this measure (when implemented with duct leakage testing) are valid up to a maximum pre-installation leakage rate of 35 percent of total fan flow.¹⁹⁰ For homes with an initial leakage rate greater than 35 percent of total fan flow, savings will be awarded with respect to this cap rather than the initial leakage. Data from nearly 28,000 single-family and mobile home duct blaster tests conducted for duct efficiency improvements in Texas between 2003 and 2006 show that more than 70 percent of all pre-retrofit leakage rates fall below 38 percent total leakage.¹⁹¹

Engineering calculations show that the interior temperature in those settings that exceed 38 percent total leakage would be above the thermally acceptable comfort levels published by ASHRAE in its 2009 Fundamentals publication. The proposed pre-installation leakage limits will help ensure that the deemed savings are an accurate reflection of the program's impacts and that the program focuses its efforts on scenarios where leakage conditions are likely to persist if unaddressed for several years.

Low-income customers¹⁹² are exempt from the cap limiting the maximum pre-installation leakage rate to 35 percent of total fan flow.

While these baseline criteria were applied in deriving the deemed savings for the alternate approach (without duct leakage testing), it is not necessary to determine the pre-installation leakage rate for projects claiming the alternate deemed savings.

High-Efficiency Condition

Materials used should be long-lasting materials, such as mastics, UL 181A or UL 181B approved foil tape or aerosol-based sealants. Fabric-based duct tape is not allowed.

The selected methodology for estimating duct sealing deemed savings according to the standard approach requires duct leakage-to-outside testing using a combination duct pressurization and house pressurization.

¹⁹⁰ Total Fan Flow = Cooling Capacity (tons) x 400 cfm/ton.

¹⁹¹ Based on data collected by Frontier Energy for investor-owned utilities in Texas.

¹⁹² Low-income customers are income-eligible customers served through a targeted low-income energy efficiency program as described in 25.181(r). This may also apply to income-eligible customers served through a hard-to-reach program that is also delivered following the guidelines in 25.181(r). <u>https://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.181/25.181.pdf</u>.

Duct Leakage Testing (Standard Approach)

Measurements to determine pre-installation and post-installation leakage rates must be performed in accordance with utility-approved procedures. For this measure, leakage-to-outside must be directly measured. The project sponsor shall use the Combination Duct Blaster[™] (or equivalent) and blower door method. Prior to beginning any installations, the project sponsor must submit the intended method(s) and may be required to provide the utility with evidence of competency, such as RESNET certification, North American Technician Excellence (NATE) certification, or other certification by evaluator approved EPA-recognized ENERGY STAR Home Certification Organization (HCO). Leakage rates must be measured and reported at the average air distribution system operating pressure (25 Pa).¹⁹³

Categorizing Achieved Duct Leakage Reduction (Absent Leakage Testing)

Participating energy efficiency service providers (EESPs) electing not to perform leakage testing should nevertheless provide an estimate of the expected outcome of the leakage reduction work performed: projects should be characterized according to contractor estimation of whether the work required should result in a *low*, *average*, or *high reduction* in duct system leakage. EESPs should take the following considerations into account in assessing the likely leakage reduction achieved in a given project:

- The number and size of repaired leaks
- Leak location: a leak in an attic joint will cause more energy loss than a joint that leaks to conditioned space
- Supply/return: supply-side leaks, particularly in the return air plenum and near the air handling unit can be especially problematic, as they tend to draw additional unconditioned air into the system.

Systems that were not initially very leaky and in which few joints and supply vents were sealed should be characterized as low reduction. Jobs with a typical number of supply vents and joints sealed, and in which the supply air return or the return air plenum were sealed, should be characterized as average reduction. Jobs requiring significant interventions to eliminate large or numerous leaks should be considered high reduction.

The following table provides a guideline for selecting an appropriate leakage category. How the category is determined may fluctuate on a per-home basis.

¹⁹³ See ANSI/RESNET/ICC 380, Chapter 4 Procedure for Measuring Airtightness of Building or Dwelling Unit Enclosure and Chapter 5 Procedure for Measuring Airtightness of Duct Systems.

Category	Duct location	Duct insulation value	Leakage characteristics ¹⁹⁵
Low	> 90 percent	> R7	Some observable leaks
	conditioned		Substantial leaks
		R4 - R7	Some observable leaks
			Substantial leaks
		< R4	Some observable leaks
			Substantial leaks
	50-90 percent	> R7	Some observable leaks
	conditioned	R4 - R7	Some observable leaks
		< R4	Some observable leaks
Average	> 90 percent	> R7	Catastrophic leaks
	conditioned	R4 - R7	Catastrophic leaks
		< R4	Catastrophic leaks
	50-90 percent conditioned	> R7	Substantial leaks
			Catastrophic leaks
		R4 - R7	Substantial leaks
		< R4	Substantial leaks
	< 50 percent	> R7	Some observable leaks
	conditioned	R4 - R7	Some observable leaks
		< R4	Some observable leaks
High	50-90 percent	R4 - R7	Catastrophic leaks
	conditioned	< R4	Catastrophic leaks
	< 50 percent	> R7	Substantial leaks
	conditioned		Catastrophic leaks
		R4 - R7	Substantial leaks
			Catastrophic leaks
		< R4	Substantial leaks
			Catastrophic leaks

Table 71. Duct Sealing—Leakage Categorization Guide¹⁹⁴

Energy and Demand Savings Methodology

Savings may be claimed according to either the standard approach (with duct leakage testing) or the alternate approach, according to the following sections.

¹⁹⁴ Based on typical distribution efficiency assumptions from the Building Performance Institute (BPI) Technical Standards for the Heating Professional, November 20, 2007, page 7. <u>http://www.bpi.org/sites/default/files/Technical%20Standards%20for%20the%20Heating%20Professional.pdf</u>.

¹⁹⁵ Catastrophic leaks are defined by BPI as disconnected ducts, missing end-caps, and other catastrophic holes.

Standard Approach (with Duct Leakage Testing)

The annual energy and summer and winter peak demand savings to be claimed according to the standard approach for this measure shall be calculated as a function of the reduction in duct leakage achieved, using the energy and demand savings coefficients from Table 72 through Table 74 for the climate zone in which the project was implemented and the type of heating equipment in the project home.

Savings Algorithms and Input Variables

Calibrated simulation modeling was used to develop these deemed savings, which are expressed as linear functions of the reduction in duct leakage achieved (in CFM₂₅). Specifically, these deemed savings estimates were developed using BEopt 2.6, running EnergyPlus 8.4 as the underlying simulation engine. To model this measure, the prototype home models for each climate zone were modified as follows: the base case duct leakage rate was set to 8 CFM₂₅ per 100 square feet. Results from running the base case model provide estimated hourly energy use for the prototypical home prior to treatment. Post-treatment conditions were simulated by setting the leakage rate to 6 CFM₂₅ per 100 square feet. Results from running the change case model provide estimated hourly energy use for the prototypical home after treatment. A comparison of these two runs provides the deemed savings estimates.

Deemed savings are presented as a function of the CFM₂₅ reduction achieved, as demonstrated by leakage to outside testing using the Combination Duct BlasterTM (or equivalent) and Blower Door method. The kWh and kW per CFM₅₀ values represented by the V_E, V_S, and V_W coefficients are derived by taking the difference between annual energy use and summer and winter peak demand, as estimated by the two model runs and normalizing to the CFM₂₅ reduction achieved.

Deemed Energy Savings Tables

Table 72 presents the annual energy savings per CFM_{25} reduction for a residential duct sealing project. The following formula shall be used to calculate annual energy savings for duct leakage reduction:

Energy Savings
$$[\Delta kWh] = (DL_{pre} - DL_{post}) \times V_E$$

Equation 54

Where:

DL _{pre}	=	Pre-improvement duct leakage at 25 Pa (cu. ft./min)
DL _{post}	=	Post-improvement duct leakage at 25 Pa (cu. ft./min)
V _{E,C}	=	Cooling Energy Savings Coefficient in Table 72
$V_{E,H}$	=	Heating Energy Savings Coefficient in Table 72

	V _{E,C} : Cooling savings		V _{E,H} : Heating savings			
Climate zone	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump	
Zone 1: Amarillo	0.82	0.21	0.07	2.75	0.71	
Zone 2: Dallas	1.05	_	0.03	1.19	0.31	
Zone 3: Houston	1.23	_	0.02	0.85	0.26	
Zone 4: Corpus Christi	1.46	_	0.01	0.61	0.19	
Zone 5: El Paso	1.20	0.38	0.03	1.44	0.37	

Table 72. Duct Sealing—Energy Savings V_E per CFM₂₅ Reduction

Deemed Summer Demand Savings Tables

Table 73 presents the summer peak demand savings per CFM_{25} reduction for a residential duct sealing project. The following formula shall be used to calculate deemed summer demand savings for duct leakage reduction:

Summer Pek Demand Savings $[\Delta kW] = (DL_{pre} - DL_{post}) \times V_S$

Equation 55

Where:

V_S = Summer Demand Savings Coefficient (see Table 73)

Table 73.	Duct Sealing-	-Summer De	emand Savings	V _s per CF	M ₂₅ Reduction
	Buot bouining		sinana oatingo	13 00. 01	m ₂₅ modulom

	Summer kW impact per CFM ₂₅ reduction				
Climate zone	Refrigerated	Evaporative			
Zone 1: Amarillo	9.28E-04	2.29E-04			
Zone 2: Dallas	8.47E-04	-			
Zone 3: Houston	1.06E-03	-			
Zone 4: Corpus Christi	6.72E-04	-			
Zone 5: El Paso	7.66E-04	1.86E-04			

Deemed Winter Demand Savings Tables

Table 74 presents the winter peak demand savings per CFM_{25} reduction for a residential duct sealing project. The following formula shall be used to calculate deemed winter demand savings for duct leakage reduction:

Deemed Winter Demand Savings
$$(kW) = (DL_{pre} - DL_{post}) \times V_W$$

Equation 56

Where:

 V_W = Winter Demand Savings Coefficient (see Table 74)

	kWh impact per CFM ₂₅ reduction				
Climate zone	Gas	Resistance	Heat pump		
Zone 1: Amarillo	4.38E-06	8.49E-04	1.46E-04		
Zone 2: Dallas	1.22E-06	9.96E-04	6.98E-04		
Zone 3: Houston	8.60E-06	8.61E-04	5.02E-04		
Zone 4: Corpus Christi	1.18E-05	6.71E-04	4.06E-04		
Zone 5: El Paso	6.68E-06	2.81E-04	6.69E-05		

Table 74. Duct Sealing—Winter Demand Savings V_w per CFM₂₅ Reduction

Alternate Approach (No Duct Leakage Testing)

The following savings tables are provided for projects implemented without performing leakage testing, accounting for the application of pre-retrofit leakage caps to not hard-to-reach (HTR) projects. The annual energy and summer and winter peak demand savings to be claimed according to the alternate approach for this measure shall be taken from Table 72 through Table 74 for the climate zone in which the project was implemented and the type of heating equipment in the project home.

While savings for multiple duct systems are additive for the standard approach, the following savings are specified per home when using the alternate approach and should not be multiplied by the number of treated duct systems.

NOTE: This approach is only available to programs with an incentive structure that does not vary by leakage category. Additionally, energy efficiency service providers (EESPs) should not alternate between the standard and alternative approaches during the same program year. Utilities should either restrict all participants within an individual program to one approach or the other, or they should restrict individual EESPs to one approach or the other across all program types.

Hard-to-Reach (HTR) and Targeted Low-Income Programs

Deemed Energy Savings Tables (Alternate Approach)

Table 75. Duct Sealing—Climate Zone 1: Amarillo—Energy Savings (kWh), HTR Alternate Approach

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	204	52	17	685	177
2	Average	323	83	28	1,083	280
3	High	514	132	44	1,725	445

Table 76. Duct Sealing—Climate Zone 2: Dallas—Energy Savings (kWh), HTR Alternate Approach

		Cooling savings		Heating savings			
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump	
1	Low	262	_	7	297	77	
2	Average	413	_	12	468	122	
3	High	659	_	19	746	194	

Table 77. Duct Sealing—Climate Zone 3: Houston—Energy Savings (kWh), HTR Alternate Approach

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	307	_	5	212	65
2	Average	484	-	8	335	102
3	High	771	_	13	533	163

Table 78. Duct Sealing—Climate Zone 4: Corpus Christi—Energy Savings (kWh), HTR Alternate Approach

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	364	-	2	152	47
2	Average	575	-	4	240	75
3	High	916	_	6	383	119

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	299	95	7	359	92
2	Average	472	150	12	567	146
3	High	753	238	19	903	232

Table 79. Duct Sealing—Climate Zone 5: El Paso—Energy Savings (kWh), HTR Alternate Approach

Deemed Summer Demand Savings Tables (Alternate Approach)

Table 80. Duct Sealing—Climate Zone 1: Amarillo—Summer Peak Demand Savings (kW), HTR Alternate Approach

Category	Refrigerated	Evaporative
Low	0.23	0.06
Average	0.37	0.09
High	0.58	0.14

Table 81. Duct Sealing—Climate Zone 2: Dallas—Summer Peak Demand Savings (kW), HTR Alternate Approach

Category	Refrigerated	Evaporative
Low	0.21	-
Average	0.33	_
High	0.53	_

Table 82. Duct Sealing—Climate Zone 3: Houston—Summer Peak Demand Savings (kW), HTR Alternate Approach

Category	Refrigerated	Evaporative
Low	0.26	-
Average	0.42	-
High	0.66	-

Table 83. Duct Sealing—Climate Zone 4: Corpus Christi—Summer Peak Demand Savings (kW), HTR Alternate Approach

Category	Refrigerated	Evaporative
Low	0.17	_
Average	0.26	_
High	0.42	_

Category	Refrigerated	Evaporative
Low	0.19	0.05
Average	0.30	0.07
High	0.48	0.12

Table 84. Duct Sealing—Climate Zone 5: El Paso—Summer Peak Demand Savings (kW), HTR Alternate Approach

Deemed Winter Demand Savings Tables (Alternate Approach)

Table 85. Duct Sealing—Climate Zone 1: Amarillo—Winter Peak Demand Savings (kW), HTR Alternate Approach

	Heating system type					
Category	Gas	Electric resistance	Heat pump			
Low	0.00	0.21	0.04			
Average	0.00	0.33	0.06			
High	0.00	0.53	0.09			

Table 86. Duct Sealing—Climate Zone 2: Dallas—Winter Peak Demand Savings (kW), HTR Alternate Approach

	Heating system type					
Category	Gas	Electric resistance	Heat pump			
Low	0.00	0.25	0.17			
Average	0.00	0.39	0.27			
High	0.00	0.62	0.44			

Table 87. Duct Sealing—Climate Zone 3: Houston—Winter Peak Demand Savings (kW), HTR Alternate Approach

	Heating system type					
Category	Gas	Electric resistance	Heat pump			
Low	0.00	0.21	0.13			
Average	0.00	0.34	0.20			
High	0.01	0.54	0.31			

······································						
	Heating system type					
Category	Gas	Electric resistance	Heat pump			
Low	0.00	0.17	0.10			
Average	0.00	0.26	0.16			
High	0.01	0.42	0.25			

Table 88. Duct Sealing—Climate Zone 4: Corpus Christi—Winter Peak Demand Savings (kW), HTR Alternate Approach

Table 89. Duct Sealing—Climate Zone 5: El Paso—Winter Peak Demand Savings (kW), HTR Alternate Approach

	Heating system type					
Category	Gas	Electric resistance	Heat pump			
Low	0.00	0.07	0.02			
Average	0.00	0.11	0.03			
High	0.00	0.18	0.04			

All Other Programs

Deemed Energy Savings Tables (Alternate Approach)

Table 90. Duct Sealing—Climate Zone 1: Amarillo—Energy Savings (kWh), Alternate Approach

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	187	48	16	628	162
2	Average	300	77	26	1,005	259
3	High	428	110	37	1,437	371

Table 91. Duct Sealing—Climate Zone 2: Dallas—Energy Savings (kWh), Alternate Approach

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	240	-	7	272	71
2	Average	384	_	11	435	113
3	High	549	_	16	622	162

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	281	_	5	194	59
2	Average	449	_	7	310	95
3	High	643	_	10	444	136

Table 92. Duct Sealing—Climate Zone 3: Houston—Energy Savings (kWh), Alternate Approach

Table 93. Duct Sealing—Climate Zone 4: Corpus Christi—Energy Savings (kWh), Alternate Approach

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	333	_	2	139	43
2	Average	533	_	4	223	69
3	High	763	_	5	319	99

Table 94. Duct Sealing—Climate Zone 5: El Paso—Energy Savings (kWh), Alternate Approach

		Cooling savings		Heating savings		
Category	Assessed leakiness	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
1	Low	274	87	7	329	84
2	Average	438	139	11	526	135
3	High	627	199	16	752	193

Deemed Summer Demand Savings Tables (Alternate Approach)

Table 95. Duct Sealing—Climate Zone 1: Amarillo—Summer Peak Demand Savings (kW), Alternate Approach

Category	Refrigerated	Evaporative
Low	0.21	0.05
Average	0.34	0.08
High	0.48	0.12

Table 96. Duct Sealing—Climate Zone 2: Dallas—Summer Peak Demand Savings (kW), Alternate Approach

Category	Refrigerated	Evaporative
Low	0.19	-
Average	0.31	_
High	0.44	_

Table 97. Duct Sealing—Climate Zone 3: Houston—Summer Peak Demand Savings (kW), Alternate Approach

Category	Refrigerated	Evaporative
Low	0.24	_
Average	0.39	_
High	0.55	_

Table 98. Duct Sealing—Climate Zone 4: Corpus Christi—Summer Peak Demand Savings (kW), Alternate Approach

Category	Refrigerated	Evaporative
Low	0.15	_
Average	0.25	_
High	0.35	_

Table 99. Duct Sealing—Climate Zone 5: El Paso—Summer Peak Demand Savings (kW), Alternate Approach

Category	Refrigerated	Evaporative
Low	0.17	0.04
Average	0.28	0.07
High	0.40	0.10

Deemed Winter Demand Savings Tables (Alternate Approach)

Table 100. Duct Sealing—Climate Zone 1: Amarillo—Winter Peak Demand Savings (kW), Alternate Approach

	Heating system type				
Category	Gas	Electric resistance	Heat pump		
Low	0.00	0.19	0.03		
Average	0.00	0.31	0.05		
High	0.00	0.44	0.08		

••				
	Heating system type			
Category	Gas	Electric resistance	Heat pump	
Low	0.00	0.23	0.16	
Average	0.00	0.36	0.25	
High	0.00	0.52	0.36	

Table 101. Duct Sealing—Climate Zone 2: Dallas—Winter Peak Demand Savings (kW), Alternate Approach

Table 102. Duct Sealing—Climate Zone 3: Houston—Winter Peak Demand Savings (kW), Alternate Approach

	Heating system type				
Category	Gas	Electric resistance	Heat pump		
Low	0.00	0.20	0.11		
Average	0.00	0.31	0.18		
High	0.00	0.45	0.26		

Table 103. Duct Sealing—Climate Zone 4: Corpus Christi—Winter Peak Demand Savings (kW), Alternate Approach

	Heating system type			
Category	Gas	Electric resistance	Heat pump	
Low	0.00	0.15	0.09	
Average	0.00	0.25	0.15	
High	0.01	0.35	0.21	

Table 104. Duct Sealing—Climate Zone 5: El Paso—Winter Peak Demand Savings (kW), Alternate Approach

	Heating system type			
Category	Gas	Electric resistance	Heat pump	
Low	0.00	0.06	0.02	
Average	0.00	0.10	0.02	
High	0.00	0.15	0.03	
Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Example Deemed Savings Calculation

Example 1. Using the **standard approach**, a 1,700 square foot home with a 3.5-ton central air conditioner and a gas furnace in Climate Zone 3 is found to have a pre-retrofit duct leakage rate of 600 CFM₂₅. After sealing leaks, duct leakage is estimated at 100 CFM₂₅. The project is completed in a non-HTR program.

Max Initial Leakage Rate = $\left(400\frac{CFM}{ton} \times 3.5tons\right) \times 35\% = 490 \ CFM_{25}$ Reported Initial Leakage = Min (600, 490) = 490 CFM_{25} $DL_{pre} - DL_{post} = (490 - 100) = 390 \ CFM_{25}$ $kWh \ savings = (1.23 + 0.02) \times 390 = 488 \ kWh$ Summer $kW \ savings = 1.06 \times 10^{-3} \times 390 = 0.41 \ kW$ Winter $kW \ savings = 8.60 \times 10^{-6} \times 390 = 0.003 \ kW$

Example 2. Using the **alternate approach**, a duct sealing project is completed on a home of any square footage with a central heat pump of any tonnage in Climate Zone 3. The duct system is categorized as 50-90 percent in conditioned space with an existing duct insulation value of R4-R7 and substantial leaks. Therefore, that home is categorized as an average leakage home. No leakage testing is performed. The project is completed in an HTR program. All savings are taken directly from deemed savings lookup tables.

kWh savings = 484 + 102 = 586 kWh Summer kW savings = 0.42 kW Winter kW savings = 0.20 kW

Additional Calculators and Tools

There is a calculator to estimate the energy and demand savings associated with this measure using the algorithms described in the previous subsection.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for a duct sealing measure is 18 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID HV-DuctSeal-BW.¹⁹⁶

¹⁹⁶ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Cooling type (central refrigerated, evaporative cooling, none)
- Heating type (central gas furnace, central electric resistance furnace, heat pump, none)
- Additional documentation is required to validate resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach)
- Cooling capacity of home HVAC units (tons)
- EESPs claiming savings according to duct leakage testing:
 - Pre-improvement duct leakage at 25 Pa (cu. ft./min)
 - Post-improvement duct leakage at 25 Pa (cu. ft./min)
 - Pre- and post-photos of leakage test readings
- EESPs claiming savings without performing leakage testing should provide:
 - o Description of the leakage severity in the home (low, average, or high)
 - Description of location and condition of ducts:
 - Duct location (>90 percent conditioned, 50-90 percent conditioned, <50 percent conditioned)
 - Existing duct insulation value (>R7, R4-R7, <R4)
 - Leakage characteristics (some observable leaks, substantial leaks, catastrophic leaks)
 - Other relevant details that may assist with validating claimed leakage category (recommended)
 - Description and photos of interventions taken (both pre- and postcondition), such as newly sealed joints, supply vents, and other relevant leaks sealed
 - Incentive rate structure: incentive should be paid per home and should not vary by leakage category to avoid providing an incentive to overstate the existing leakage category.

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor formatting changes, and language introduced to provide further direction for low-income customers and testing procedure. Contractors now required to track cooling capacity of HVAC equipment. Language added to reflect updates to federal standards for central heat pumps and central air conditioners.
v2.1	1/30/2015	TRM v2.1 update. Addition of language referring contractors to program manuals for information regarding health and safety precautions.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. Update of reference sources for air temperatures and densities, heating degree-days. Cooling demand savings required to be claimed.
v4.0	10/10/2016	TRM v4.0 update. Approach changed from algorithm-based to deemed savings coefficients estimated using building simulation models. Updated energy and demand savings. Added separate savings for homes with evaporative cooling. Updated measure description to eliminate eligibility for homes without a central AC, but with a ducted heating system.
v5.0	10/2017	TRM v5.0 update. Remove PY 2017 option to use energy and demand adjustment factors in combination with algorithm methodology from TRM v3.1.
v6.0	11/2018	TRM v6.0 update. Added alternative approach to bypass the need to complete leakage testing based on preceding guidance memo.

Table 105. Duct Sealing—Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v8.0 update. Added clarifying language on incentive rate per home.
v8.0	10/2020	TRM v8.0 update. Updated eligibility and documentation requirements for electric resistance heat.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Corrected typo in leakage categorization guide.
v11.0	10/2023	TRM v11.0 update. No revision.

2.3 RESIDENTIAL: BUILDING ENVELOPE

2.3.1 Air Infiltration Measure Overview

TRM Measure ID: R-BE-AI Market Sector: Residential low-income and hard-to-reach Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

This measure involves the implementation of interventions to reduce the rate of air infiltration into residences. Pre- and post-treatment blower door air pressure readings are required to confirm air leakage reduction. The standard approach for estimating savings in this measure is based on the results obtained via pre- and post-leakage testing as defined in this measure.

Eligibility Criteria

Savings in this measure apply to low-income (LI) and hard-to-reach (HTR) customers only. Cooling savings apply to customers with central or mini-split electric refrigerated air conditioning in their homes. Heating savings apply to customers with a central furnace (gas or electric resistance) or a heat pump in their homes. Customers who participate in HTR or LI programs are also eligible to claim heating or cooling savings for homes heated with gas or electric resistance space heaters and/or cooled by one or more room air conditioners by applying an adjustment to deemed savings for the specified system.

There is an upper limit of 4.6 CFM₅₀ per square foot of house floor area for the pre-retrofit infiltration rate on eligible projects. For homes where the pre-retrofit leakage exceeds this limit, savings will be awarded against the leakage cap.

Utilities may require certification or competency testing of personnel who will perform the blower door tests Air leakage should be assessed through testing following Building Performance Institute (BPI) standards. In some limited cases, where testing is not possible or unsafe (e.g., due to potential presence of asbestos), a visual assessment may be satisfactory. The air leakage testing should not be conducted in homes where either evidence of asbestos or mold is present or suspected due to the age of the home.¹⁹⁷ Utilities' program manuals should be consulted for health and safety considerations related to the implementation of air sealing measures.

Only structures with electric refrigerated air conditioning systems are eligible.

Baseline Condition

The baseline for this measure is the existing leakage rate of the treated residence. The existing leakage rate should be capped to account for the fact that the deemed savings values per CFM_{50} leakage reduction are only applicable up to a point where the existing HVAC equipment would run continuously. Beyond that point, energy use will no longer increase linearly with an increase in leakage.

Baseline assumptions used in the development of these deemed savings are based on a conversion from ACH_{Natural}. ASHRAE Handbook: Fundamentals specifies that more than 80 percent of sampled low-income housing had a pre-leakage rate at or below 1.75 ACH_{Natural}.¹⁹⁸ ACH_{Natural} was converted to CFM₅₀/sq. ft. using Equation 57.

$$CFM_{50,pre} = \frac{ACH_{Natural,pre} \times h \times N}{60}$$

Equation 57

Where:

ACH _{Natural,pre}	=	1.75 representing greater than 80 percent of sampled homes
h	=	Ceiling height (ft.) = 8.5 (default) ¹⁹⁹
Ν	=	N factor for single story normal shielding (Table 106) = 18.5

Using the above approach, the maximum per-square-foot pre-installation infiltration rate is 4.6 CFM₅₀/sq. ft.. Therefore, to avoid incentivizing homes with envelope problems not easily remedied through typical weatherization procedures, or where blower door tests were improperly conducted, these savings should only be applied starting at a baseline CFM₅₀/sq. ft. of 4.6 or lower.

¹⁹⁷ The Building Performance Institute, Inc. (BPI) Standard Reference: Building Performance Institute Technical Standards for the Building Analyst Professional, v2/28/05mda, Page 1 of 17, states: "Health and Safety: Where the presence of asbestos, lead, mold and/or other potentially hazardous material is known or suspected, all relevant state and federal (EPA) guidelines must be followed to ensure technician and occupant safety. Blower door depressurization tests may not be performed in homes where there is a risk of asbestos becoming airborne and being drawn into the dwelling."
¹⁹⁸ 2017 ASHRAE Handbook: Fundamentals, Chapter 16, p. 16.19, Fig. 12.

¹⁹⁹ Typical ceiling height of 8 feet adjusted to account for greater ceiling heights in some areas of a typical residence.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²⁰⁰ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²⁰¹ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

Blower door air pressure measurements must also be used to ensure that post-treatment air infiltration rates are not less than those set forth by the standard in Equation 58, based on floor area and the number of bedrooms.²⁰² These calculated minimum CFM₅₀ values assume two occupants for a one-bedroom dwelling unit and an additional person for each additional bedroom. At the utility's discretion, this minimum CFM₅₀ requirement may be enforced as an eligibility requirement. Otherwise, savings may be claimed for projects where the measured final infiltration rate is less than the minimum allowable ventilation rate if the following conditions are met:

- Mechanical ventilation is present or introduced in compliance with ASHRAE 62.2-2019
- Post-treatment infiltration rate is reported as the actual measured CFM50 result
- Savings are calculated using the TRM minimum allowable ventilation rate with no additional savings claimed for CFM reduction below this amount

Where higher occupant densities are known, the minimum rate shall be increased by 7.5 CFM_{Nat} for each additional person. A CFM_{Nat} value can be converted to CFM₅₀ by multiplying by the appropriate N factor (Table 106).

$$Min \ CFM_{50} = [0.03 \times A_{Floor} + 7.5 \times OCC] \times N$$

Equation 58

Where:

Min CFM50	=	Minimum final ventilation rate (CFM ₅₀)
A _{Floor}	=	Floor area (sq. ft.)
000	=	BR + 1, where BR is the number of bedrooms; if number of home occupants is known to exceed BR + 1, occupancy should be used instead
N	=	N factor (Table 106)

²⁰⁰ Electric Resistance Heating: <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²⁰¹ Portable Heaters: <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

²⁰² ASHRAE 62.2-2013. CFM_{Nat} values converted to CFM₅₀ values by multiplying by appropriate N factor.

	Nu	Imber of stories	S
Shielding	1 story	2 story	3+ stories
Well shielded	22.2	17.8	15.5
Normal	18.5	14.8	13.0
Exposed	16.7	13.3	11.7

Table 106. Air Infiltration—N Factors²⁰³

The maximum CFM reduction percentage²⁰⁴ is capped at 30 percent. It is important to note that the minimum ventilation rate specified earlier in this section still applies for cases where the maximum 30 percent CFM reduction cannot be achieved due to the post CFM value being limited by the minimum allowable post CFM value provisioned for safety reasons.

The TRM stipulates an upper limit of 4.6 CFM_{50} per square foot of house floor area for the preretrofit infiltration rate as part of eligibility criteria. For homes where the pre-retrofit leakage exceeds this limit, energy and demand savings must be calculated using the pre-measureinstallation leakage cap. Therefore, when the pre-retrofit leakage is capped, energy and demand savings can only be claimed for a 30 percent reduction in CFM compared to the capped pre-CFM value. When the pre-retrofit leakage is not capped, energy and demand savings can only be claimed for a 30 percent reduction in CFM compared to the tested, actual pre-retrofit infiltration rate of the home.

The TRM requires all contractors to provide sufficient evidence (e.g., pictures capturing the scope/type of retrofit implemented and blower door test readings) for all homes.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Calibrated simulation modeling was used to develop these deemed savings, which are expressed as linear functions of the leakage reduction achieved (in CFM_{50}).²⁰⁵ Specifically, these deemed savings estimates were developed using BEopt 2.6, running EnergyPlus 8.4 as the underlying simulation engine. To model this measure, the prototype home models for each climate zone were modified as follows: the base case air infiltration rate was set to 20 ACH₅₀. Results from running the base case model provide estimated hourly energy use for the prototypical home prior to treatment. Post-treatment conditions were simulated by setting the leakage rate to 3 ACH₅₀.

²⁰³ Krigger, J. and Dorsi, C., "Residential Energy: Cost Savings and Comfort for Existing Buildings". A-11 Building Tightness Limits, p. 284. Use Zone 2 for Texas climate.

²⁰⁴ CFM reduction percentage is calculated as: (pre-CFM value – post-CFM value) / pre-CFM value

²⁰⁵ Model testing indicates a straight-line relationship between demand and energy savings achieved and CFM50 reductions is appropriate with beginning and ending leakage rates within the ranges permitted by the measure.

Deemed savings are presented as a function of the CFM₅₀ reduction achieved, as demonstrated by blower door testing. The kWh and kW per CFM₅₀ values represented by the V_E, V_S, and V_W coefficients are derived by taking the difference between annual energy use and summer and winter peak demand as estimated by the two model runs and normalizing to the CFM₅₀ reduction achieved. The pre- and post-treatment ACH₅₀ values (20 and 3, respectively) are converted to CFM₅₀ by multiplying the pressurized air-change rate by the volume of the model home and dividing by 60 (minutes/hour).

Deemed Energy Savings Tables

Table 107 presents the energy savings per CFM_{50} reduction for a residential air sealing project. The following formula shall be used to calculate deemed energy savings for infiltration efficiency improvements.

Energy Savings
$$[\Delta kWh] = \Delta CFM_{50} \times (V_{E,C} \times CAF + V_{E,H} \times HAF)$$

Equation 59

Where:

ΔCFM_{50}	=	Air infiltration reduction in cubic feet per minute at 50 Pascal
V _{E,C}	=	Cooling energy savings coefficient (Table 107)
CAF	=	Cooling savings adjustment factor for homes with room air conditioners; set to 1.0 for homes with refrigerated air or set to 0.6 for homes with one or more room air conditioners
V _{E,H}	=	Heating energy savings coefficient (Table 107)
HAF	=	Heating savings adjustment factor for homes with electric resistance space heaters; set to 1.0 for homes with central heating with supplemental space heating or set to 0.24 for homes with primary electric resistance space heating

For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling values in Table 107 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 107 by a factor of 0.24.²⁰⁶

²⁰⁶ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields $10,200 \div 42,000 = 0.24$.

	V _{E,C} : Cooling savings	V _{E,H} : Heating savings		js
Climate zone	Refrigerated air	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	0.12	0.09	1.92	0.78
Zone 2: Dallas	0.27	0.04	1.10	0.45
Zone 3: Houston	0.22	0.02	0.63	0.25
Zone 4: Corpus Christi	0.39	0.02	0.55	0.21
Zone 5: El Paso	0.07	0.03	0.88	0.34

Table 107. Air Infiltration—Energy Savings V_E per CFM₅₀ Reduction

Deemed Summer Demand Savings Tables

Table 108 presents the summer peak demand savings per CFM 50 reduction for a residential air sealing project. The following formula shall be used to calculate deemed summer demand savings for air infiltration improvements:

Summer Peak Demand Savings $[\Delta kW] = \Delta CFM_{50} \times V_S \times CAF$

Equation 60

Where:

 $V_{\rm S}$ = Summer demand savings coefficient (Table 108)

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling values in Table 108 by a factor of 0.6.

Climate zone	Summer kW impact per CFM ₅₀ reduction
Zone 1: Amarillo	1.64E-04
Zone 2: Dallas	2.10E-04
Zone 3: Houston	1.90E-04
Zone 4: Corpus Christi	2.24E-04
Zone 5: El Paso	9.40E-05

Table 108. Air Infiltration—Peak Summer Demand Savings V_S per CFM₅₀ Reduction

Deemed Winter Demand Savings Tables

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 109 by a factor of 0.24. For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 109 by a factor of 0.24.

Table 109 presents the summer peak demand savings per CFM₅₀ reduction for a residential air sealing project. The following formula shall be used to calculate deemed winter demand savings for air infiltration improvement:

Winter Peak Demand Savings
$$[\Delta kW] = \Delta CFM_{50} \times V_W \times HAF$$

Equation 61

Where:

 V_W

= Winter demand savings coefficient (Table 109)

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 109 by a factor of 0.24.²⁰⁷

Table 109. Air Infiltration—Peak Winter Demand Savings V_w per CFM₅₀ Reduction

	Winter kW impact per CFM ₅₀ reduction			
Climate zone	Electric resistance	Heat pump		
Zone 1: Amarillo	9.42E-04	5.48E-04		
Zone 2: Dallas	1.25E-03	6.93E-04		
Zone 3: Houston	8.61E-04	4.41E-04		
Zone 4: Corpus Christi	7.81E-04	3.60E-04		
Zone 5: El Paso	2.92E-04	1.19E-04		

Claimed Peak Demand Savings

Refer to Volume 1, Section 4.

Example Deemed Savings Calculation

Example 1. A contractor uses a blower door test to estimate $12,000 \text{ CFM}_{50}$ of pre-retrofit air leakage in a 2,200 square foot, 2-story, 3-bedroom home in Climate Zone 4 with a heat pump. The home is located in a normally shielded area. After identifying and sealing leaks, she performs another blower door test and measures 8,000 CFM₅₀ of air leakage.

 $Max Initial \ Leakage \ Rate \ = 4.6 \ \times \ 2,200 = 10,120 \ CFM_{50}$ $Reported \ Initial \ Leakage \ = Min \ (12,000,10,120) = 10,120 \ CFM_{50}$ $Capped \ Post \ Retrofit \ Leakage \ = 10,120 \ \times \ (1 - 0.3) = 7,084 \ CFM_{50}$ $Reported \ Post \ Retrofit \ Leakage \ = Max \ (8,000,7,084) = 8,000 \ CFM_{50}$

²⁰⁷ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Min. Post Retrofit Leakage (safety) = $[0.03 \times 2,200 + 7.5 \times 4] \times 14.8 = 1,421 CFM_{50}$

$$\Delta CFM_{50} = (10,120 - 8,000) = 2,120$$

Energy Savings = $(0.39 + 0.21) \times 2,120 = 1,272 \, kWh$

Summer Peak Demand Savings = $2.24 \times 10^{-4} \times 2,120 = 0.47 \, kW$

Winter Peak Demand Savings = $3.60 \times 10^{-4} \times 2,120 = 0.76 \, kW$

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 11 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID BS-Wthr.²⁰⁸

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Pre-retrofit air infiltration in cubic feet per minute at 50 Pascal
- Post-retrofit air infiltration in cubic feet per minute at 50 Pascal
- Cooling type (central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); representative sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Square footage of the house
- Shielding level (well shielded, normal, exposed)
- Number of bedrooms
- Number of stories

²⁰⁸ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

- Number of occupants
- Pre- and post-photos of blower door test readings
- Representative photos of leak repairs

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 62. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 27903. Order Adopting New §25.184 as Approved at the August 21, 2003, Open Meeting and Submitted to the Secretary of State. Public Utility Commission of Texas.
- Docket No. 41070. Petition of El Paso Electric Company to Approve Revisions to Residential and Commercial Deemed Savings Based on Climate Data Specific to El Paso, Texas. Public Utility Commission of Texas.
- Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language. Added detail on methodology and model characteristics.
v2.1	1/30/2015	TRM v2.1 update. Addition of language referring contractors to program manuals for information regarding health and safety precautions.
v3.0	4/10/2015	TRM v3.0 update. Revision of minimum ventilation requirements, pre- retrofit cap on infiltration levels, Climate Zone 5 savings values for homes with heat pumps, and tracking number of bedrooms and occupants in a house.
v3.1	11/05/2015	TRM v3.1 update. Provided clarification around effects of occupancy on minimum final ventilation.

Table 110. Air Infiltration—Revision History

TRM version	Date	Description of change
v4.0	10/10/2016	TRM v4.0 update. Updated energy and demand savings per new prototype energy simulation models. Introduced new protocols related to maximum CFM reduction percentage and its associated documentation requirements. Added a new example for calculating savings.
v5.0	10/2017	TRM v5.0 update. Added alternative approach to bypass the need to complete leakage testing in guidance memo to follow.
v6.0	11/2018	TRM v6.0 update. Removed alternative approach allowance at this time. Clarified the eligibility of projects where CFM_{post} falls below the minimum ventilation rate requirement.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Reduced leakage cap and updated documentation requirements. Updated eligibility to only LI/HTR. Added space heat adjustment factor and electric resistance documentation requirement.
v9.0	10/2021	TRM v9.0 update. Updated savings calculation example and EUL reference.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. Added electric resistance documentation adjustment factor.

2.3.2 Ceiling Insulation Measure Overview

TRM Measure ID: R-BE-CI Market Sector: Residential Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Savings are estimated for insulation improvements to the ceiling area above a conditioned space in a residence.

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes, or to customers in TRM Climate Zones 1 and 5 who have evaporative cooling systems. Homes must be centrally heated with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with gas or electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes with central refrigerated air.

Baseline Condition

Ceiling insulation levels encountered in existing homes can vary significantly, depending on factors such as the age of the home, type of insulation installed, and level of attic use (equipment, storage, etc.). Deemed savings have been developed based on different levels of encountered (existing) ceiling insulation in participating homes, ranging from sparsely insulated (R-5) to the equivalent of about 6 inches of fiberglass batt insulation (R-22). The current average ceiling insulation level at participating homes is to be determined and documented by the insulation installer. Degradation due to age and density of the existing insulation should be taken into account.

In the event that existing insulation is or has been removed during measure implementation, the existing R-value for claiming savings shall be based upon the R-value of the existing insulation prior to removal.

In the event there are varying levels of existing insulation, an area-weighted U-factor can be used to find the effective R-value across the treated area. The U-factor should be taken from the existing insulation only. This approach can be used in single attic spaces, and savings should be estimated separately for independent spaces where there are separate heating or cooling methods (e.g., additions).

Area-Weighted U-Factor Calculation Method

$$U_{A} = [U_{1} \times Area_{1} + U_{2} \times Area_{2} + \dots] / [Area_{1} + Area_{2} + \dots]$$

Effective Rvalue = $\frac{1}{U_{A}}$

Equation 62

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²⁰⁹ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²¹⁰ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

A minimum ceiling insulation level of R-30 is recommended throughout Texas as prescribed by the Department of Energy. Accordingly, deemed savings are provided for insulating to R-30. Adjustment factors are provided to allow contractors to estimate savings for installation of higher or lower levels of post-retrofit insulation. Contractors should estimate post-retrofit R-values according to the average insulation depth achieved across the area treated and the R per-inch of the insulation material installed.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Calibrated simulation modeling was used to develop these deemed savings values. Specifically, these deemed savings estimates were developed using BEopt 2.6, running EnergyPlus 8.4 as the underlying simulation engine. To model this measure, the prototype home models for each climate zone was modified as follows: the default R-value of ceiling insulation (R-15 in most zones) was set at different levels, ranging from R-0 (no ceiling insulation) to R-22. These modifications are shown in Table 111.

The model runs are used to estimate peak demand and energy use in the modeled home at each of the base case ceiling insulation levels. The change-case models were run with the ceiling insulated to R-30.

²⁰⁹ Electric Resistance Heating: <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²¹⁰ Portable Heaters: <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

Shell characteristic	Value	Source
Base ceiling insulation	< R5 R5-R8 R9-R14 R15-R22	Existing insulation level
Change ceiling insulation	R-30	R-30 retrofit insulation level consistent with DOE recommendations

Table 111. Ceiling Insulation—Prototypical Home Characteristics

Deemed Energy Savings Tables

Table 112 through Table 116, present the energy savings (kWh) associated with ceiling insulation for the five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in Table 112 through Table 118 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 112 through Table 118 by a factor of 0.24.²¹¹

Table 112. Ceiling	a Insulation—Clir	nate Zone 1: /	Amarillo, R-30	Energy Savings	(kWh/sa.	ft.)
	3 moanadon 0 m			Energy Garmige	(1111/04)	,

	Cooling	savings	Н	eating saving	s
Ceiling insulation base R-value	Refrigerated air	Evaporative cooling	Gas	Electric resistance	Heat pump
< R-5	0.41	0.12	0.12	3.07	1.31
R-5 to R-8	0.28	0.08	0.08	2.16	0.92
R-9 to R-14	0.15	0.04	0.05	1.17	0.50
R-15 to R-22	0.06	0.02	0.02	0.51	0.22

²¹¹ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

		Heating savings				
Ceiling insulation base R-value	Cooling savings	Gas	Electric resistance	Heat pump		
< R-5	0.67	0.07	1.90	0.79		
R-5 to R-8	0.46	0.05	1.34	0.55		
R-9 to R-14	0.25	0.03	0.72	0.30		
R-15 to R-22	0.11	0.01	0.32	0.13		

Table 113. Ceiling Insulation—Climate Zone 2: Dallas, R-30 Energy Savings (kWh/sq. ft.)

Table 114. Ceiling Insulation—Climate Zone 3: Houston, R-30 Energy Savings (kWh/sq. ft.)

		Heating savings				
Ceiling insulation base R-value	Cooling savings	Gas	Electric resistance	Heat pump		
< R-5	0.68	0.05	1.30	0.53		
R-5 to R-8	0.46	0.03	0.92	0.37		
R-9 to R-14	0.24	0.02	0.50	0.20		
R-15 to R-22	0.10	0.01	0.22	0.09		

Table 115. Ceiling Insulation—Climate Zone 4: Corpus Christi, R-30 Energy (kWh/sq. ft.)

		Heating savings				
Ceiling insulation base R-value	Cooling savings	Gas	Electric resistance	Heat pump		
R-5	0.52	0.03	0.89	0.34		
R-5 to R-8	0.35	0.02	0.62	0.24		
R-9 to R-14	0.18	0.01	0.33	0.13		
R-15 to R-22	0.08	0.00	0.14	0.06		

Table 116. Ceiling Insulation—Climate Zone 5: El Paso, R-30 Energy Savings (kWh/sq. ft.)

	Cooling	savings	H	leating saving	S
Ceiling insulation base R-value	Refrigerated air	Evaporative cooling	Gas	Electric resistance	Heat pump
< R-5	0.63	0.21	0.07	1.96	0.81
R-5 to R-8	0.43	0.15	0.05	1.40	0.57
R-9 to R-14	0.23	0.08	0.03	0.75	0.31
R-15 to R-22	0.10	0.03	0.01	0.33	0.13

Scale-Down/Up Factors for Energy Savings: Insulation to Below or Above R-30

The factors presented in this section are to be used when the average post-retrofit insulation depth is providing more or less than R-30 insulation. Scale-down factors are provided for the case when average post-retrofit insulation depth is not sufficient to achieve R-30; scale-up factors are provided for the case when insulating to a level greater than R-30. In either case, the following equation should be applied to scale down or scale up the energy savings.

Energy Savings
$$[\Delta kWh] = \{R30 \ Savings/ft^2 + [S_{D/U} \times (R_{Achieved} - 30)]\} \times A$$

Equation 63

Where:

R30 Savings/ft²	=	Sum of project-appropriate deemed cooling and heating energy savings per square feet taken from Table 112 through Table 116
S _{D/U}	=	Project-appropriate scale-down or scale-up factor from either Table 117 or Table 118
R _{Achieved}	=	Achieved R-value of installed insulation (e.g., for R-28, $R_{Achieved} = 28$)
A	=	Treated area (sq. ft.)

If the ceiling is insulated to a level less than R-30, the following factors shall be applied to scale down the achieved energy savings per square foot of treated ceiling area.

	Cooling	savings	Heating savings		
Climate zone	Refrigerated air	Evaporative cooling	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	4.00E-03	1.16E-03	1.27E-03	3.26E-02	1.38E-02
Zone 2: Dallas	6.66E-03	-	7.11E-04	2.00E-02	8.20E-03
Zone 3: Houston	6.22E-03	-	4.67E-04	1.38E-02	5.47E-03
Zone 4: Corpus Christi	4.92E-03	-	2.44E-04	9.04E-03	3.47E-03
Zone 5: El Paso	4.00E-03	1.16E-03	1.27E-03	3.26E-02	1.38E-02

Table 117. Ceiling Insulation—Energy Scale-Down Factors for Insulating to Less than R-30 (kWh/sq. ft./ΔR)

If the ceiling is insulated to a level greater than R-30, the following factors shall be applied to scale up the achieved energy savings per square foot of treated ceiling area.

	Cooling savings		Cooling savings Heating savings			ngs
Climate zone	Refrigerated air	Evaporative cooling	Gas	Electric resistance	Heat pump	
Zone 1: Amarillo	2.66E-03	7.63E-04	8.45E-04	2.18E-02	9.18E-03	
Zone 2: Dallas	4.45E-03	-	4.82E-04	1.33E-02	5.47E-03	
Zone 3: Houston	4.00E-03	-	2.97E-04	9.19E-03	3.66E-03	
Zone 4: Corpus Christi	3.24E-03	-	1.62E-04	5.99E-03	2.30E-03	
Zone 5: El Paso	2.66E-03	7.63E-04	8.45E-04	2.18E-02	9.18E-03	

Table 118. Ceiling Insulation—Energy Scale-Up Factors for Insulating to Greater than R-30 (kWh/sq. ft./ Δ R)

Deemed Summer Demand Savings Tables

Table 119 through Table 123 present the summer demand savings (kW/sq. ft.) associated with ceiling insulation for the five Texas climate zones.

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in the refrigerated air column in Table 119 through Table 125 by a factor of 0.6.

Table 119. Ceiling Insulation—Climate Zone 1: Amarillo, R-30 Summer Peak Demand Savings (kW/sq. ft.)

Ceiling insulation base R-value	Refrigerated	Evaporative
< R-5	8.00E-04	2.25E-04
R-5 to R-8	4.50E-04	1.47E-04
R-9 to R-14	2.33E-04	7.16E-05
R-15 to R-22	1.02E-04	2.87E-05

Table 120. Ceiling Insulation—Climate Zone 2: Dallas, R-30 Summer Peak Demand Savings (kW/sq. ft.)

Ceiling insulation base R-value	Demand savings (kW/sq. ft.)
< R-5	9.00E-04
R-5 to R-8	5.17E-04
R-9 to R-14	2.67E-04
R-15 to R-22	1.15E-04

Ceiling insulation base R-value	Demand savings (kW/sq. ft.)
< R-5	6.25E-04
R-5 to R-8	5.51E-04
R-9 to R-14	2.87E-04
R-15 to R-22	1.22E-04

Table 121. Ceiling Insulation—Climate Zone 3: Houston, R-30 Summer Peak Demand Savings (kW/sq. ft.)

Table 122. Ceiling Insulation—Climate Zone 4: Corpus Christi, R-30 Summer Peak Demand Savings (kW/sq. ft.)

Ceiling insulation base R-value	Demand savings (kW/sq. ft.)
< R-5	4.75E-04
R-5 to R-8	3.40E-04
R-9 to R-14	1.79E-04
R-15 to R-22	7.95E-05

Table 123. Ceiling Insulation—Climate Zone 5: El Paso, R-30 Summer Peak Demand Savings (kW/sq. ft)

Ceiling insulation base R-value	Refrigerated	Evaporative
< R-5	8.00E-04	2.23E-04
R-5 to R-8	4.72E-04	1.53E-04
R-9 to R-14	2.38E-04	6.25E-05
R-15 to R-22	1.03E-04	2.09E-05

Scale-Down/Up Factors: Insulation to Below or Above R-30

If the ceiling is insulated to a level less than R-30, the following factors shall be applied to scale down the achieved summer peak demand savings per square foot of treated ceiling area.

Table 124. Ceiling Insulation—Summer Peak Demand Scale-Down Factors for Insulating to Less than R-30 (kW/sq. ft./ΔR)				Factors
		Refrigerated	Evaporative	

Climate zone	Refrigerated air	Evaporative cooling
Zone 1: Amarillo	6.41E-06	1.97E-06
Zone 2: Dallas	7.30E-06	_
Zone 3: Houston	7.91E-06	_
Zone 4: Corpus Christi	5.20E-06	_
Zone 5: El Paso	6.41E-06	1.97E-06

If the ceiling is insulated to a level greater than R-30, the following factors shall be applied to scale up the achieved summer peak demand savings per square foot of treated ceiling area.

U	•	• •
Climate zone	Refrigerated air	Evaporative cooling
Zone 1: Amarillo	4.22E-06	1.89E-06
Zone 2: Dallas	4.92E-06	—
Zone 3: Houston	5.92E-06	_
Zone 4: Corpus Christi	3.47E-06	-
Zone 5: El Paso	4.22E-06	1.89E-06

Table 125. Ceiling Insulation—Summer Peak Demand Scale-Up Factors for Insulating to Greater than R-30 (kW/sq. ft./ Δ R)

Deemed Winter Demand Savings Tables

Table 126 through Table 130 present the winter demand savings associated with ceiling insulation for the five Texas climate zones.

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 126 through Table 132 by a factor of 0.24.²¹²

		• •	. ,
Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	4.25E-05	9.75E-04	8.00E-04
R-5 to R-8	2.51E-05	8.74E-04	4.53E-04
R-9 to R-14	1.37E-05	4.56E-04	2.38E-04
R-15 to R-22	4.72E-06	1.95E-04	1.01E-04

Table 126. Ceiling Insulation—Climate Zone 1: Amarillo, R-30 Winter Peak Demand Savings (kW/sq. ft.)

Table 127. Ceiling Insulation—Climate Zone 2: Dallas, R-30 Winter Peak Demand Savings (kW/sq. ft.)

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	3.50E-05	1.30E-03	8.25E-04
R-5 to R-8	2.79E-05	9.84E-04	6.60E-04
R-9 to R-14	1.45E-05	5.13E-04	3.51E-04
R-15 to R-22	6.42E-06	2.23E-04	1.52E-04

²¹² This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	4.25E-05	1.15E-03	6.75E-04
R-5 to R-8	2.91E-05	7.71E-04	4.49E-04
R-9 to R-14	1.39E-05	4.01E-04	2.35E-04
R-15 to R-22	5.36E-06	1.74E-04	1.03E-04

Table 128. Ceiling Insulation—Climate Zone 3: Houston, R-30 Winter Peak Demand Savings (kW/sq. ft.)

Table 129. Ceiling Insulation—Climate Zone 4: Corpus Christi, R-30 Winter Peak Demand Savings (kW/sq. ft.)

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	2.50E-05	8.25E-04	4.50E-04
R-5 to R-8	2.18E-05	6.31E-04	3.03E-04
R-9 to R-14	1.13E-05	3.28E-04	1.57E-04
R-15 to R-22	5.71E-06	1.44E-04	6.95E-05

Table 130. Ceiling Insulation—Climate Zone 5: El Paso, R-30 Winter Peak Demand Savings (kW/sq. ft.)

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	2.25E-05	5.75E-04	2.25E-04
R-5 to R-8	1.14E-05	3.72E-04	1.57E-04
R-9 to R-14	5.38E-06	1.79E-04	7.54E-05
R-15 to R-22	2.26E-06	7.41E-05	3.11E-05

Scale-Down/Up Factors for Demand Reduction: Insulation to Below or Above R-30

The factors presented in this section are to be used when the average post-retrofit insulation depth is providing more or less than R-30 insulation. Scale-down factors are provided for the case when average post-retrofit insulation depth is not sufficient to achieve R-30; scale-up factors are provided for the case when insulating to a level greater than R-30. In either case, the following equation should be applied to scale down or scale up the summer peak demand savings.

 $Peak Demand Savings [\Delta kW] = \{R30 Savings/ft^{2} + [S_{D/U} \times (R_{Achieved} - 30)]\} \times A$

Equation 64

Where:

R30 Savings/ft ²	=	Sum of project-appropriate deemed cooling and heating energy savings per square feet taken from Table 119 through Table 123 or Table 126 through Table 130
S _{D/U}	=	Project-appropriate scale-down or scale-up factor from either Table 124 and Table 125 (Summer) or Table 131 and Table 132 (Winter)

If the ceiling is insulated to a level less than R-30, the following factors shall be applied to scale down the achieved winter peak demand savings per square foot of treated ceiling area.

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	4.29E-07	1.21E-05	6.30E-06
Zone 2: Dallas	3.97E-07	1.40E-05	9.55E-06
Zone 3: Houston	3.05E-07	1.10E-05	6.53E-06
Zone 4: Corpus Christi	3.19E-07	9.18E-06	4.32E-06
Zone 5: El Paso	4.29E-07	1.21E-05	6.30E-06

Table 131. Ceiling Insulation—Winter Peak Demand Scale-down Factors for Insulating to Less than R-30 (kW/sq. ft./ΔR)

If the ceiling is insulated to a level greater than R-30, the following factors shall be applied to scale up the achieved winter peak demand savings per square foot of treated ceiling area.

Table 132. Ceiling Insulation—Winter Peak Der	mand Scale-up Factors
for Insulating to Greater than R-30(k)	W/sq. ft./ ΔR)

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	2.76E-07	7.85E-06	4.19E-06
Zone 2: Dallas	2.57E-07	8.33E-06	4.80E-06
Zone 3: Houston	2.19E-07	7.33E-06	4.46E-06
Zone 4: Corpus Christi	1.72E-07	5.79E-06	2.72E-06
Zone 5: El Paso	2.76E-07	7.85E-06	4.19E-06

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Example Deemed Savings Calculation

Example 1 (Scale-Up). A home in Climate Zone 5 with evaporative cooling and an electric resistance furnace insulates 400 square feet from a baseline of R-1 to an efficient condition of R-38.

Cooling kWh savings per sq. $ft = 0.21 + 7.63 \times 10^{-4} \times (38 - 30) = 0.22 \, kWh/sq. ft.$

Heating kWh savings per sq. $ft = 1.96 + 2.18 \times 10^{-2} \times (38 - 30) = 2.13 \, kWh/sq. ft.$

Energy Savings = $(0.22 + 2.13) \times 400 = 940 \, kWh$

Summer kW savings per sq. $ft = 2.23 \times 10^{-4} + 1.89 \times 10^{-6} \times (38 - 30)$ = 2.38 × 10⁻⁴ kW/sq. ft.

Summer Peak Demand Savings = $2.38 \times 10^{-4} \times 400 = 0.10 \, kW$

Winter kWsavings per sq. $ft = 5.75 \times 10^{-4} + 7.85 \times 10^{-6} \times (38 - 30)$ = 1.20 × 10⁻³ kW/sq. ft.

Winter Peak Demand Savings = $1.20 \times 10^{-3} \times 400 = 0.48 \, kW$

Example 2 (Scale-Down). A home in Climate Zone 3 with an air-source heat pump insulates 550 square feet from a baseline of R-5 to an efficient condition of R-28.

Cooling kWh savings per sq. $ft = 0.46 + 5.47 \times 10^{-3} \times (28 - 30) = 0.45 \, kWh/sq. ft$.

Heating kWh savings per sq. $ft = 0.37 + 3.66 \times 10^{-3} \times (28 - 30) = 0.36 \, kWh/sq. ft$.

Energy Savings = $(0.45 + 0.36) \times 550 = 446.4 \, kWh$

Summer kW savings per sq. $ft. = 5.51 \times 10^{-4} + 7.91 \times 10^{-6} \times (28 - 30)$ = 5.35 × 10⁻⁴ kW/sq. ft.

Summer Peak Demand Savings = $5.35 \times 10^{-4} \times 550 = 0.29 \, kW$

Winter kW savings per sq. $ft = 4.49 \times 10^{-4} + 6.53 \times 10^{-6} \times (28 - 30)$ = 4.36 × 10⁻⁴ kW/sq. ft.

Winter Peak Demand Savings = $4.36 \times 10^{-4} \times 550 = 0.24 \, kW$

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

According to the GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007),²¹³ the estimated useful life is 25 years for ceiling insulation.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Base R-value of original insulation
- R-value of installed insulation
- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes.
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Square footage of ceiling insulation installed above a conditioned space
- Only for homes with a reported baseline R-value that is less than R-5:
 - Two pictures: (1) a picture showing the entire attic floor, and (2) a closeup picture of a ruler that shows the measurement of the depth of the insulation.

Note: The second photo type is required for each area of insulation where there are varying R-values less than R-5. Additionally, both photo types are required for all separate attic/ceiling areas, even when the installed R-value is the same.

²¹³ GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007). <u>http://library.cee1.org/sites/default/files/library/8842/CEE_Eval_MeasureLife</u> <u>StudyLightsandHVACGDS_1Jun2007.pdf</u>.

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 62. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 41070. Petition of El Paso Electric Company to Approve Revisions to Residential and Commercial Deemed Savings Based on Climate Data Specific to El Paso, Texas. Public Utility Commission of Texas.
- Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Added detail on methodology and model characteristics.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. Provided savings tables for installation of insulation up to R-38. Multiplier provided to adjust cooling side savings for homes with evaporative cooling due to lower energy usage and demand associated with evaporative coolers relative to refrigerated air conditioning. Climate Zone 2 savings values awarded for Climate Zone 5 homes with heat pumps.
v3.1	11/05/2015	TRM v3.1 update. Provided example savings calculations. Clarified that no heating demand savings are to be claimed for homes with a gas furnace.
v4.0	10/10/2016	TRM v4.0 update. Updated energy and demand savings per new prototype simulation models and introduced new protocols for baseline and post-retrofit R-values, their associated savings estimations and documentation requirements.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.

Table 133. Ceiling Insulation—Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 update. Added clarifying language for U-factor methodology.
v8.0	10/2020	TRM v8.0 update. Updated savings tables. Added space heat adjustment factor and electric resistance documentation requirement.
v9.0	10/2021	TRM v9.0 update. Updated savings tables for < R-5 baseline category.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. Added electric resistance documentation adjustment factor.

2.3.3 Attic Encapsulation Measure Overview

TRM Measure ID: R-BE-AE Market Sector: Residential Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Savings are estimated for bringing the attic into conditioned space by insulating and sealing the attic walls and roofs, eliminating leakage (to outside) and removing ceiling insulation, if present, to enhance airflow between the attic and the conditioned space directly below. Savings are presented according to Insulation Improvement and Infiltration Reduction components. Participants are expected to claim the sum of component savings.

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes or to customers in TRM Climate Zones 1 and 5 who have evaporative cooling systems. Homes must be centrally heated with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with gas or electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes with central refrigerated air.

Baseline Condition

The baseline condition is a vented, unfinished attic with some level of ceiling insulation. Ceiling insulation levels in existing construction can vary significantly, depending on the age of the home, type of insulation installed, and activity in the attic (such as using the attic for storage and HVAC equipment). Deemed savings have been developed based on different levels of encountered (existing) ceiling insulation in participating homes, ranging from sparsely insulated (< R-5) to the equivalent of about 6 inches of fiberglass batt insulation (R-22). The average ceiling insulation level prior to the retrofit for at participating homes is to be determined and documented by the contractor. Degradation due to age and density of the existing insulation should be taken into account.

Because existing ceiling insulation must be removed during measure implementation, the existing R-value will be based upon the R-value of the existing insulation prior to removal.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²¹⁴ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²¹⁵ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

A minimum ceiling insulation level of R-30 is recommended throughout Texas as prescribed by the Department of Energy²¹⁶. Accordingly, deemed savings are provided for insulating to R-30. Adjustment factors are provided to allow contractors to estimate savings for installation of higher or lower levels of post-retrofit insulation. Contractors should estimate post-retrofit R-value according to the average insulation depth achieved across the area treated and the R per-inch of the insulation material installed.

Vents, obvious leaks, are to be sealed. Ceiling insulation between the attic and the conditioned space is removed.

Energy and Demand Savings Methodology

The energy and demand savings produced by the attic encapsulation measures have two components: 1) reduced heat transfer into the attic from the insulation improvement, and 2) reduced leakage of conditioned air to outside by closing off vents and sealing of leaks. Accordingly, deemed energy and demand savings are presented by their insulation and air infiltration components. Both insulation improvement component and infiltration reduction component savings should be claimed for all projects. Insulation improvement component savings shall be claimed using deemed savings derived for the ceiling insulation measure, as explained below. There are two paths for claiming infiltration reduction component savings depending on whether pre- and post-retrofit blower door testing is undertaken when implementing the attic encapsulation measure. If blower door testing is performed, savings for the infiltration reduction component can be estimated according to the Residential Air Infiltration measure (Measure 2.3.1). If blower door testing is not undertaken, savings for the Infiltration Reduction component shall be claimed as presented in the air infiltration reduction component savings presented in this measure (below).

In previous versions of the TRM, energy and demand savings for the attic encapsulation measure have been presented according to the results achieved by directly modeling the attic encapsulation measure according to the best interpretation of how the measure should be represented. The expectation is that this measure should, at a minimum, provide savings commensurate with those obtained from the installation of ceiling insulation. In general, the

²¹⁴ Electric Resistance Heating: <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²¹⁵ Portable Heaters: <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

²¹⁶ Department of Energy Insulation R-value recommendations for zone 2/3, <u>https://www.energy.gov/energysaver/weatherize/insulation</u>.

measure is expected to out-perform ceiling insulation. However, modeling results have not reflected this expectation due to complications accounting for reduced infiltration, resulting in lower deemed savings for the attic encapsulation measure than those estimated for ceiling insulation. To encourage implementation of the measure and begin to develop information about the outcomes, the savings presented in this measure for the insulation improvement component of the Attic Encapsulation Measure are equivalent to the ceiling insulation measure savings. After adding air infiltration reduction component savings to the insulation improvement component component savings, attic encapsulation measure savings will exceed those of the ceiling insulation measure.

Insulation Component Savings

Savings Algorithms and Input Variables (Insulation Component)

Calibrated simulation modeling was used to develop these deemed savings values. Specifically, these deemed savings estimates were developed by modeling the ceiling insulation measure using BEopt 2.6, running EnergyPlus 8.4 as the underlying simulation engine. For details on the derivation of these savings, refer to the Residential Ceiling Insulation Measure (Measure 2.3.2).

Deemed Energy Savings Tables (Insulation Component)

Table 135 through Table 139 present the energy savings (kWh) associated with attic encapsulation for the five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types. Savings are specified per square foot of conditioned space directly below the treated attic.

For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling energy savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling savings value from Table 135 through Table 141 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 135 through Table 141 by a factor of 0.24.²¹⁷

Shell characteristic	Value	Source
Base attic encapsulation	Vented attic < R5 R5-R8 R9-R14 R15-R22	Typical construction practice throughout the state
Change attic encapsulation with blower door test	Sealed attic with no ceiling insulation and R-30 roof deck insulation	R-30 retrofit insulation level consistent with DOE recommendations

Table 134. Attic Encapsulation—Prototypical Home Characteristics

²¹⁷ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Shell characteristic	Value	Source
Change attic encapsulation without blower door test	Sealed attic with no ceiling insulation and R-30 roof deck insulation 18 percent leakage reduction	Insulation: R-30 retrofit insulation level consistent with DOE recommendations Leakage Reduction: mean reduction achieved via attic encapsulation according to ACCA Manual J, 8 th Edition, Section 21- 14 ²¹⁸

Table 135. Attic Encapsulation—Climate Zone 1: Amarillo, R-30 Energy Savings for Insulation Component (kWh/sq. ft)

	Cooling savings			gs	
Ceiling insulation base R-value	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
< R-5	0.41	0.12	0.12	3.07	1.31
R-5 to R-8	0.28	0.08	0.08	2.16	0.92
R-9 to R-14	0.15	0.04	0.05	1.17	0.50
R-15 to R-22	0.06	0.02	0.02	0.51	0.22

Table 136. Attic Encapsulation—Climate Zone 2: Dallas, R-30 Energy Savings for Insulation Component (kWh/sq. ft)

	Heating savings			
Ceiling insulation base R-value	Cooling savings	Gas	Electric resistance	Heat pump
< R-5	0.67	0.07	1.90	0.79
R-5 to R-8	0.46	0.05	1.34	0.55
R-9 to R-14	0.25	0.03	0.72	0.30
R-15 to R-22	0.11	0.01	0.32	0.13

Table 137. Attic Encapsulation—Climate Zone 3: Houston, R-30 Energy Savings for Insulation Component (kWh/sq. ft)

		Heating savings			
Ceiling insulation base R-value	Cooling savings	Gas	Electric resistance	Heat pump	
< R-5	0.68	0.05	1.30	0.53	
R-5 to R-8	0.46	0.03	0.92	0.37	
R-9 to R-14	0.24	0.02	0.50	0.20	
R-15 to R-22	0.10	0.01	0.22	0.09	

²¹⁸ Section 21-14 of ACCA Manual J states that, "...a foam encapsulated attic eliminates ceiling leakage to the outdoors (i.e., to a vented attic), which means that the reduction in infiltration Cfm may range from 3 to 30 percent, with an 18 percent mean, as noted above". See Air Conditioning Contractors of America. Manual J, 8th Edition Version 2.10. Nov. 2011, p. 188.

		Heating savings		
Ceiling insulation base R-value	Cooling savings	Gas	Electric resistance	Heat pump
< R-5	0.52	0.03	0.89	0.34
R-5 to R-8	0.35	0.02	0.62	0.24
R-9 to R-14	0.18	0.01	0.33	0.13
R-15 to R-22	0.08	0.00	0.14	0.06

Table 138. Attic Encapsulation—Climate Zone 4: Corpus Christi, R-30 Energy Savings for Insulation Component (kWh/sq. ft)

Table 139. Attic Encapsulation—Climate Zone 5: El Paso, R-30 Energy Savings for Insulation Component (kWh/sq. ft)

	Cooling	savings	Н	eating saving	S
Ceiling insulation base R-value	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
< R-5	0.63	0.21	0.07	1.96	0.81
R-5 to R-8	0.43	0.15	0.05	1.40	0.57
R-9 to R-14	0.23	0.08	0.03	0.75	0.31
R-15 to R-22	0.10	0.03	0.01	0.33	0.13

Scale-Down/Up Factors for Energy Savings: Insulation to Below or Above R-30

The factors presented in this section are to be used when the average post-retrofit insulation depth is providing either more than or less than R-30 insulation. Scale-down factors are provided for the case when average post-retrofit insulation depth is not sufficient to achieve R-30; scale-up factors are provided for the case when insulating to a level greater than R-30. In either case, the following equation should be applied to scale down or scale up the energy savings.

Energy Savings
$$[\Delta kWh] = \{R30 \ Savings/ft^2 + [S_{D/U} \times (R_{Achieved} - 30)]\} \times A$$

Equation 65

Where:

R30 Savings/ft ²	=	Sum of project-appropriate deemed Cooling and Heating Energy Savings per square feet taken from Table 135 through Table 139
S _{D/U}	=	Project-appropriate scale-down or scale-up factor from either Table 140 or Table 141

$$R_{Achieved} = Achieved R-value of installed insulation(e.g., for R-28, $R_{Achieved} = 28$)
$$A = Treated area (sq. ft.)$$$$

If the roof deck and attic walls are insulated to a level less than R-30, the factors in Table 140 shall be applied to scale down the achieved energy savings per square foot of treated ceiling area.

	Cooling savings		Heating savings		
Climate zone	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	4.00E-03	1.16E-03	1.27E-03	3.26E-02	1.38E-02
Zone 2: Dallas	6.66E-03	_	7.11E-04	2.00E-02	8.20E-03
Zone 3: Houston	6.22E-03	_	4.67E-04	1.38E-02	5.47E-03
Zone 4: Corpus Christi	4.92E-03	_	2.44E-04	9.04E-03	3.47E-03
Zone 5: El Paso	4.00E-03	1.16E-03	1.27E-03	3.26E-02	1.38E-02

Table 140. Attic Encapsulation—Energy Scale-down Factors for Insulating to Less than R-30 (kWh/sq. ft./ Δ R)

If the roof deck and attic walls are insulated to a level greater than R-30, the following factors shall be applied to scale up the achieved energy savings per square foot of treated ceiling area.

Table 141. Attic Encapsulation—Energy Scale-up Factors for Insulating to Greater than R-30 (kWh/sq. ft./ΔR)

	Cooling savings		Heating savings		
Climate zone	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	2.66E-03	7.63E-04	8.45E-04	2.18E-02	9.18E-03
Zone 2: Dallas	4.45E-03	_	4.82E-04	1.33E-02	5.47E-03
Zone 3: Houston	4.00E-03	_	2.97E-04	9.19E-03	3.66E-03
Zone 4: Corpus Christi	3.24E-03	_	1.62E-04	5.99E-03	2.30E-03
Zone 5: El Paso	2.66E-03	7.63E-04	8.45E-04	2.18E-02	9.18E-03

Deemed Summer Demand Savings Tables

Table 142 through Table 146 present the summer demand savings (kW/sq. ft.) associated with the Insulation Improvement component of the Attic Encapsulation Measure for the five Texas climate zones.

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in the refrigerated air column in Table 142 through Table 148 by a factor of 0.6.

Table 142. Attic Encapsulation—Climate Zone 1: Amarillo, R-30 Summer Peak Demand Savings for Insulation Component (kW/sq. ft.)

Ceiling insulation base R-value	Refrigerated	Evaporative
< R-5	8.00E-04	2.25E-04
R-5 to R-8	4.50E-04	1.47E-04
R-9 to R-14	2.33E-04	7.16E-05
R-15 to R-22	1.02E-04	2.87E-05

Table 143. Attic Encapsulation—Climate Zone 2: Dallas,R-30 Summer Peak Demand Savings for Insulation Component (kW/sq. ft.)

Ceiling insulation base R-value	Demand savings
< R-5	9.00E-04
R-5 to R-8	5.17E-04
R-9 to R-14	2.67E-04
R-15 to R-22	1.15E-04

Table 144. Attic Encapsulation—Climate Zone 3: Houston, R-30 Summer Peak Demand Savings for Insulation Component (kW/sq. ft.)

Ceiling insulation base R-value	Demand savings
< R-5	6.25E-04
R-5 to R-8	5.51E-04
R-9 to R-14	2.87E-04
R-15 to R-22	1.22E-04

Table 145. Attic Encapsulation—Climate Zone 4: Corpus Christi, R-30 Summer Peak Demand Savings for Insulation Component (kW/sq. ft.)

Ceiling insulation base R-value	Demand savings
< R-5	4.75E-04
R-5 to R-8	3.40E-04
R-9 to R-14	1.79E-04
R-15 to R-22	7.95E-05

Т	Fable 146. Attic Encapsulation—Climate Zone 5: El Paso,
R-30 Sum	mer Peak Demand Savings for Insulation Component (kW/sq. ft.

Ceiling insulation base R-value	Refrigerated	Evaporative
< R-5	8.00E-04	2.23E-04
R-5 to R-8	4.72E-04	1.53E-04
R-9 to R-14	2.38E-04	6.25E-05
R-15 to R-22	1.03E-04	2.09E-05

Scale-Down/Up Factors: Insulation to Below or Above R-30

If the roof deck and attic walls are insulated to a level less than R-30, the following factors shall be applied to scale down the achieved summer peak demand savings per square foot of treated ceiling area.

Table 147. Attic Encapsulation—Summer Peak Demand Scale-down Factors for Insulating to Less than R-30 (kW/sq. ft./ΔR)

Climate zone	Refrigerated	Evaporative
Zone 1: Amarillo	6.41E-06	1.97E-06
Zone 2: Dallas	7.30E-06	_
Zone 3: Houston	7.91E-06	_
Zone 4: Corpus Christi	5.20E-06	_
Zone 5: El Paso	6.41E-06	1.97E-06

If the roof deck and attic walls are insulated to a level greater than R-30, the following factors shall be applied to scale up the achieved summer peak demand savings per square foot of treated ceiling area.

Table 148. Attic Encapsulation—Summer Peak Demand Scale-up Factors for Insulating to Greater than R-30 (kW/sq. ft./ΔR)

Climate zone	Refrigerated	Evaporative
Zone 1: Amarillo	4.22E-06	1.89E-06
Zone 2: Dallas	4.92E-06	_
Zone 3: Houston	5.92E-06	_
Zone 4: Corpus Christi	3.47E-06	_
Zone 5: El Paso	4.22E-06	1.89E-06
Deemed Winter Demand Savings Tables

Table 149 through Table 153 present the winter demand savings associated with the Insulation Improvement component of the Attic Encapsulation Measure for the five Texas climate zones.

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 149 through Table 155 by a factor of 0.24.²¹⁹

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	4.25E-05	9.75E-04	8.00E-04
R-5 to R-8	2.51E-05	8.74E-04	4.53E-04
R-9 to R-14	1.37E-05	4.56E-04	2.38E-04
R-15 to R-22	4.72E-06	1.95E-04	1.01E-04

 Table 149. Attic Encapsulation—Climate Zone 1: Amarillo,

 R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)

Table 150. Attic Encapsulation—Climate Zone 2: Dallas, R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	3.50E-05	1.30E-03	8.25E-04
R-5 to R-8	2.79E-05	9.84E-04	6.60E-04
R-9 to R-14	1.45E-05	5.13E-04	3.51E-04
R-15 to R-22	6.42E-06	2.23E-04	1.52E-04

Table 151. Attic Encapsulation—Climate Zone 3: Houston, R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	4.25E-05	1.15E-03	6.75E-04
R-5 to R-8	2.91E-05	7.71E-04	4.49E-04
R-9 to R-14	1.39E-05	4.01E-04	2.35E-04
R-15 to R-22	5.36E-06	1.74E-04	1.03E-04

²¹⁹ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	2.50E-05	8.25E-04	4.50E-04
R-5 to R-8	2.18E-05	6.31E-04	3.03E-04
R-9 to R-14	1.13E-05	3.28E-04	1.57E-04
R-15 to R-22	5.71E-06	1.44E-04	6.95E-05

Table 152. Attic Encapsulation—Climate Zone 4: Corpus Christi, R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)

Table 153. Attic Encapsulation—Zone 5: El Paso, R-30 Winter Peak Demand Savings for Insulation Component (kW/sq. ft.)

Ceiling insulation base R-value	Gas	Electric resistance	Heat pump
< R-5	2.25E-05	5.75E-04	2.25E-04
R-5 to R-8	1.14E-05	3.72E-04	1.57E-04
R-9 to R-14	5.38E-06	1.79E-04	7.54E-05
R-15 to R-22	2.26E-06	7.41E-05	3.11E-05

Scale-Down/Up Factors for Demand Reduction: Insulation to Below or Above R-30

The factors presented in this section are to be used when the average post-retrofit insulation depth is providing more or less than R-30 insulation. Scale-down factors are provided for the case when average post-retrofit insulation depth is not sufficient to achieve R-30; scale-up factors are provided for the case when insulating to a level greater than R-30. In either case, the following equation should be applied to scale down or scale up the summer peak demand savings.

Peak Demand Savings $[\Delta kW] = \{R30 \ Savings/ft^2 + [S_{D/U} \times (R_{Achieved} - 30)]\} \times A$

Equation 66

Where:

R30 Savings/ft ²	=	Sum of project-appropriate deemed Cooling and Heating Energy Savings per square feet taken from Table 142 through Table 146 or Table 149 through Table 153
Sd/U	=	Project-appropriate scale-down or scale-up factor from either Table 147 and Table 148 (summer) or Table 154 and Table 155 (winter)

If the roof deck and attic walls are insulated to a level less than R-30, the following factors shall be applied to scale down the achieved winter peak demand savings (per square foot of treated ceiling area).

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	4.29E-07	1.21E-05	6.30E-06
Zone 2: Dallas	3.97E-07	1.40E-05	9.55E-06
Zone 3: Houston	3.05E-07	1.10E-05	6.53E-06
Zone 4: Corpus Christi	3.19E-07	9.18E-06	4.32E-06
Zone 5: El Paso	4.29E-07	1.21E-05	6.30E-06

Table 154. Attic Encapsulation—Winter Peak Demand Scale-down Factors for Insulating to Less than R-30 (kW/sq. ft./ Δ R)

If the roof deck/attic walls are insulated to a level greater than R-30, the following factors shall be applied to scale up the achieved winter peak demand savings per square foot of treated ceiling area.

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	2.76E-07	7.85E-06	4.19E-06
Zone 2: Dallas	2.57E-07	8.33E-06	4.80E-06
Zone 3: Houston	2.19E-07	7.33E-06	4.46E-06
Zone 4: Corpus Christi	1.72E-07	5.79E-06	2.72E-06
Zone 5: El Paso	2.76E-07	7.85E-06	4.19E-06

Table 155. Attic Encapsulation—Winter Peak Demand Scale-cp Factors for Insulating to Greater than R-30 (kW/sq. ft./ΔR)

Air Infiltration Reduction Component Savings

Energy and demand savings for the air infiltration reduction component of the attic encapsulation measure are calculated either using the results of pre- and post-retrofit blower door testing or an average percent infiltration reduction. Regardless of how air infiltration reduction component savings are calculated, they should be added to the insulation improvement component savings to arrive at the total energy and demand savings for implementing the Attic Encapsulation measure.

Homes without refrigerated cooling should not claim air infiltration reduction component savings for attic encapsulation.

With Blower Door Testing

Implementers choosing to perform pre- and post-measure blower door testing should claim the air infiltration reduction component deemed energy and demand savings for the Attic Encapsulation measure using the estimated CFM₅₀ reduction from the blower door tests with the equations and coefficients in the Residential Infiltration measure (Measure 2.3.1).

Without Blower Door Testing

Implementers electing not to perform blower door testing when performing this measure shall claim air infiltration reduction component deemed energy and demand savings for the Attic Encapsulation measure using this section, which presents the annual energy (kWh) and summer and winter demand savings (kW) associated with attic encapsulation for the five Texas climate zones, taking into account a mean leakage reduction of 18 percent.²²⁰ Savings are presented per home.

Savings Algorithms and Input Variables (Infiltration Reduction Component)

Calibrated simulation modeling was used to develop air infiltration reduction deemed savings, which are expressed in Measure 2.3.1 as linear functions of the leakage reduction achieved (in CFM_{50}).²²¹ For details on the derivation of the air infiltration measure savings, refer to the Residential Air Infiltration measure (Measure 2.3.1).

ACCA Manual J provides an average leakage reduction attributable to attic encapsulation projects of 18 percent.²²² Accordingly, deemed savings attributable to the air infiltration reduction component of an attic encapsulation project implemented without pre- and post-implementation blower door testing are estimated by applying an 18 percent leakage reduction to the infiltration rates embedded in the deemed savings prototype model homes used in the derivation of residential envelope measure deemed savings for the Texas TRM. This 18 percent leakage reduction provides the CFM₅₀ reduction input required to estimate air infiltration measure deemed savings with the equations in Measure 2.3.1.

Shell characteristic	CFM ₅₀ reduction	Source
Air infiltration reduction from attic encapsulation (without blower door testing)	18 percent reduction	Mean reduction achieved via attic encapsulation according to ACCA Manual J, 8 th Edition, Section 21-14 ²²³

Table 156. Attic Encapsulation—Prototypical Home Characteristics

²²⁰ Section 21-14 of ACCA Manual J states that, "...a foam encapsulated attic eliminates ceiling leakage to the outdoors (i.e., to a vented attic), which means that the reduction in infiltration CFM may range from 3 to 30 percent, with an 18 percent mean, as noted above". See Air Conditioning Contractors of America. Manual J, 8th Edition Version 2.10. Nov. 2011, p. 188.

²²¹ Model testing indicates a straight-line relationship between demand and energy savings achieved and CFM50 reductions is appropriate with beginning and ending leakage rates within the ranges permitted by the measure.

²²² Air Conditioning Contractors of America. Manual J, 8th Edition Version 2.10. Nov. 2011, p. 188.

²²³ Section 21-14 of ACCA Manual J states that, "...a foam encapsulated attic eliminates ceiling leakage to the outdoors (i.e., to a vented attic), which means that the reduction in infiltration Cfm may range from 3 to 30 percent, with an 18 percent mean, as noted above". See Air Conditioning Contractors of America. Manual J, 8th Edition Version 2.10. Nov. 2011, p. 188.

Deemed Energy Savings Tables (Infiltration Reduction Component)

Annual energy savings are provided by the space heating equipment type combined with refrigerated cooling. Savings are specified per home based on a deemed 18 percent infiltration reduction. Homes without refrigerated cooling are not eligible to claim these savings.

		•	•	
		Heating type		
Climate zone	Gas/ no heat	Electric resistance	Heat pump	
Zone 1: Amarillo	135.0	874.5	385.8	
Zone 2: Dallas	209.2	600.3	315.5	
Zone 3: Houston	161.9	469.5	259.6	
Zone 4: Corpus Christi	179.7	411.9	262.9	
Zone 5: El Paso	64.3	524.7	226.5	

Table 157. Attic Encapsulation—Energy Savings for Infiltration Reduction Component, 18 Percent Air Infiltration Reduction (kWh/home)

Deemed Summer Demand Savings Tables (Infiltration Reduction Component)

Summer demand savings are specified per home based on a deemed 18 percent infiltration reduction. Homes without refrigerated cooling are not eligible to claim these savings.

Table 158. Attic Encapsulation—Summer Peak Demand Savings for Infiltration Reduction Component, 18 Percent Air Infiltration Reduction (kW/home)

	Cooling type		
Climate zone	Refrigerated	Evaporative	
Zone 1: Amarillo	0.088	_	
Zone 2: Dallas	0.117	_	
Zone 3: Houston	0.117	_	
Zone 4: Corpus Christi	0.098	_	
Zone 5: El Paso	0.056	_	

Deemed Winter Demand Savings Tables (Infiltration Reduction Component)

Winter demand savings are provided by space heating equipment types. Savings are specified per home based on a deemed 18 percent infiltration reduction.

			(
	Heating type		
Climate zone	Gas/ no heat	Electric resistance	Heat pump
Zone 1: Amarillo	_	0.404	0.235
Zone 2: Dallas	_	0.548	0.304
Zone 3: Houston	_	0.476	0.244
Zone 4: Corpus Christi	_	0.342	0.158
Zone 5: El Paso	-	0.161	0.066

Table 159. Attic Encapsulation—Winter Peak Demand Savings for the Infiltration Reduction Component, 18 Percent Air Infiltration Reduction (kW/home)

Example Deemed Savings Calculation

Example 1. A contractor seals the attic and adds R-38 insulation to the underside of the roof to a home with 900 square feet of conditioned space below the treated attic in Climate Zone 3 with refrigerated air and a gas furnace, which has existing ceiling insulation estimated at R-7. No blower door testing is performed.

Insulation component savings:

Energy Savings/ ft^2 , Insulation to $R - 30 = 0.46 + 0.03 = 0.49 \, kWh/ft^2$

Energy Savings, Insulation to R - 38 =

 $\{0.49 + [(4x10^{-3} + 2.97x10^{-4}) \times (38 - 30)]\} \times 900 = 471.9 \, kWh$

Summer Peak Demand Savings, Insulation to R - 38 =

 $\{5.51 \times 10^{-4} + [5.92 \times 10^{-6} x (38 - 30)]\} \times 900 = 0.54 kW$

Winter Peak Demand Savings, Insulation to R - 38 =

$$\{2.91 \times 10^{-5} + [2.19x10^{-7} \times (38 - 30)]\} \times 900 = 0.03 \, kW$$

Infiltration reduction component savings:

```
Energy Savings, 18% Infiltration Reduction = 161.9 kWh
```

Summer Peak Demand Savings, 18% Infiltration Reduction = $0.12 \ kW$

Winter Peak Demand Savings, 18% Infiltration Reduction = 0

Measure savings:

Energy Savings = $471.9 + 161.9 = 633.8 \, kWh$

Summer Peak Demand Savings = $0.54 + 0.12 = 0.66 \, kW$

Winter Peak Demand Savings = 0.03 + 0 = 0.03 kW

Example 2. A contractor seals the attic and adds R-30 insulation to the underside of the roof to a home with 1,200 square feet of conditioned space below the treated attic in Climate Zone 4 with an air-source heat pump in which existing ceiling insulation is demonstrated to be R-9. Blower door testing performed before and after measure implementation demonstrated a 750 CFM₅₀ reduction in leakage rate.

Insulation component savings:

Energy Savings = $(0.18 + 0.13) \times 1,200 = 372 \, kWh$ Summer Peak Demand Savings = $(1.79 \times 10^{-4}) \times 1,200 = 0.21 \, kW$ Winter Peak Demand Savings = $(1.57 \times 10^{-4}) \times 1,200 = 0.19 \, kW$

Infiltration reduction component savings:

Energy Savings, 750 CFM₅₀ Infiltration Reduction = $750 \times (0.39 \times 1 + 0.21) = 450 kWh$

Summer Peak Demand Savings, 750 CFM_{50} Infiltration Reducion = $750 \times (2.24 \times 10^{-4} \times 1) = 0.17 \text{ kW}$

Winter Peak Demand Savings, 750 CFM₅₀ Infiltration Reduction = $750 \times (3.60 \times 10^{-4}) = 0.27 \text{ kW}$

Measure savings:

Energy Savings = $372 + 450 = 822 \, kWh$

Summer Peak Demand Savings = $0.21 + 0.17 = 0.38 \, kW$

Winter Peak Demand Savings = $0.19 + 0.27 = 0.46 \, kW$

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

According to the GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007),²²⁴ the Estimated Useful Life is 25 years for ceiling insulation. The measure life specified for ceiling insulation is also appropriate for attic encapsulation.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Base R-value of original insulation
- R-value of installed insulation
- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Square footage of conditioned space directly below the treated attic
- Indicate whether blower door testing was performed and whether air infiltration reduction component savings are claimed in this measure or separately using the Air Infiltration measure
- Only for homes with a reported baseline R-value that is less than R-5:
 - Two pictures: (1) a picture showing the entire attic floor, and (2) a closeup picture of a ruler that shows the measurement of the depth of the insulation

Note: The second photo type is required for each area of insulation where there are varying R-values less than R-5. Additionally, both photo types are required for all separate attic/ceiling areas, even when the installed R-value is the same.

²²⁴ GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007). <u>http://library.cee1.org/sites/default/files/library/8842/CEE_Eval_MeasureLife</u> <u>StudyLightsandHVACGDS_1Jun2007.pdf</u>.

References and Efficiency Standards

Petitions and Rulings

• 10/2017

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v4.0	10/10/2016	TRM v4.0 origin.
v5.0	10/2017	TRM v5.0 update. Incorporated alternative savings path that includes savings for infiltration reduction.
v6.0	11/2018	TRM v6.0 update. Removed closed cell recommendation.
v7.0	11/2019	TRM v7.0 update. Incorporated EM&V guidance memo.
v8.0	10/2020	TRM v8.0 update. Updated savings tables. Added space heat adjustment factor and electric resistance documentation requirement.
v9.0	10/2021	TRM v9.0 update. Updated savings tables for < R-5 baseline category.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. Added electric resistance documentation adjustment factor.

Table 160. Attic Encapsulation—Revision History

2.3.4 Wall Insulation Measure Overview

TRM Measure ID: R-BE-WI Market Sector: Residential Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Wall insulation is added to the walls surrounding conditioned space in existing homes, either by removing wall enclosures and applying batt or spray insulation or by otherwise filling (e.g., blowing in loose insulation) the cavity space between studs in the walls of existing homes. Walls may be either 2x4 or 2x6 construction. Savings are estimated for filling the wall cavities of 2x4 or 2x6 walls with fiberglass batts, cellulose, or closed-cell spray foam and are presented per square foot of treated wall area (gross wall area less window and door area).

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes, or to customers in TRM Climate Zones 1 and 5 who have evaporative cooling systems. Homes must be centrally heated with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with gas or electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes with central refrigerated air.

Refer to the Baseline Condition section below for eligibility criteria regarding the pre-retrofit level of wall insulation.

Baseline Condition

The baseline is a house with little or no wall insulation in the wall cavity. For those homes for which a minimal level of insulation is encountered, the baseline is established at R-4. This baseline should be used to represent homes for which installed insulation covers a very limited amount of the wall area to be treated, is significantly degraded, and/or is less than an inch thick. Homes with more than this base level of insulation are not eligible for the measure.

Baseline homes may have either 2x4 or 2x6 construction.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²²⁵ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²²⁶ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

The standard throughout Texas for adding wall insulation to an existing wall cavity is R-13, as prescribed by the United States Department of Energy (DOE) and Texas Department of Housing and Community Affairs (TDHCA) programs. The standard is achieved by filling a 2x4 wall cavity with fiberglass batt or cellulose insulation, which typically provides an R-value per inch (thickness) of between 3 and 4 ft² ·°F·hr/Btu. Other wall insulation materials may be used, such as closed-cell spray foam, which approximately provides R-6 per inch.

As such, deemed savings are provided for insulating 2x4 and 2x6 walls to the levels presented in Table 161.

Insulation material	2x4 wall	2x6 wall
Fiberglass batt or cellulose	R-13	R-17
Closed-cell spray foam	R-21	R-33

Table 161. Wall Insulation—High-Efficiency Condition R-Values for 2x4 and 2x6 Walls

Wall insulation reduces the ventilation rate in the home, and therefore, a post-installation blower door test must be conducted. Results must comply with the minimum final ventilation rate discussed in the High-Efficiency Condition section found in the Air Infiltration section of this document. This requirement applies to retrofits implemented under the HTR and RSOP programs.

²²⁵ Electric Resistance Heating: <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²²⁶ Portable Heaters: <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Calibrated simulation modeling was used to develop these deemed savings values. Specifically, these deemed savings estimates were developed using BEopt 2.6, running EnergyPlus 8.4 as the underlying simulation engine. To model this measure, the prototype home models for each climate zone were modified as follows: the default R-11 insulation was reduced to either R-0 or R-4.

The model runs calculated energy use for the prototypical home prior to the installation of the wall insulation measure. Next, change-case models were run to calculate energy use with the wall insulation measure in place.

Shell characteristic	Value	Source
Base wall insulation	R-0 R-4	BEopt estimates wall assembly R-value for uninsulated walls to be 3.6 for 2x4 construction and 3.7 for 2x6 construction. Assembly R-values for R-4 walls are 6.7 and 7.1 for 2x4 and 2x6 construction, respectively. Listed base levels are for the insulation material only.
Change wall insulation 2x4 wall	R-13 R-21	For retrofit with fiberglass batt/cellulose and closed-cell spray foam, respectively.
Change wall insulation 2x6 wall	R-17 R-33	EF or retrofit with fiberglass batt/cellulose and closed-cell spray foam, respectively.

Table 162. Wall Insulation—Prototypical Home Characteristics

Deemed Energy Savings Tables

Savings are presented separately for insulating 2x4 wall construction and homes with 2x6 walls. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in Table 163 through Table 166 by a factor of 0.6. Similarly for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 163 through Table 166 by a factor of 0.24.²²⁷

²²⁷ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields $10,200 \div 42,000 = 0.24$.

2x4 Walls

Table 163 presents the deemed energy savings values for insulating 2x4 walls to R-13 for all five Texas climate zones.

		Cooling savings			Heating saving	gs
Climate zone	Baseline R-value	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	0.50	0.17	0.18	3.96	1.67
Zone 2: Dallas		0.85	-	0.09	2.44	0.99
Zone 3: Houston		0.90	-	0.07	1.67	0.66
Zone 4: Corpus Christi	-	0.53	-	0.04	1.19	0.45
Zone 5: El Paso	-	0.76	0.29	0.09	2.40	0.98
Zone 1: Amarillo	R-4	0.18	0.06	0.07	1.52	0.64
Zone 2: Dallas		0.32	-	0.04	0.93	0.38
Zone 3: Houston		0.33	-	0.03	0.64	0.25
Zone 4: Corpus Christi		0.19	-	0.01	0.45	0.17
Zone 5: El Paso		0.28	0.11	0.03	0.92	0.37

Table 163. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x4 Walls to R-13

Table 164 presents the deemed energy savings values for insulating 2x4 walls to R-21 for all five Texas climate zones.

		Cooling	Heating savings			
Climate zone	Baseline R-value	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	0.56	0.18	0.20	4.44	1.87
Zone 2: Dallas		0.95	-	0.10	2.73	1.11
Zone 3: Houston		1.01	-	0.08	1.88	0.74
Zone 4: Corpus Christi		0.59	-	0.04	1.33	0.50
Zone 5: El Paso		0.85	0.33	0.10	2.69	1.09
Zone 1: Amarillo	R-4	0.24	0.08	0.09	2.00	0.84
Zone 2: Dallas		0.42	-	0.05	1.23	0.50
Zone 3: Houston		0.43	-	0.03	0.84	0.33
Zone 4: Corpus Christi		0.26	_	0.02	0.59	0.22
Zone 5: El Paso]	0.37	0.14	0.05	1.20	0.49

Table 164. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x4 Walls to R-21

2x6 Walls

Table 165 presents the deemed energy savings values for insulating 2x6 walls to R-17 for all five Texas climate zones.

		Cooling savings			Heating Saving	IS
Climate zone	Baseline R-value	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	0.53	0.18	0.19	4.27	1.80
Zone 2: Dallas		0.91	-	0.10	2.63	1.07
Zone 3: Houston		0.97	-	0.08	1.81	0.71
Zone 4: Corpus Christi		0.56	-	0.04	1.27	0.48
Zone 5: El Paso		0.81	0.31	0.10	2.58	1.05
Zone 1: Amarillo	R-4	0.22	0.07	0.08	1.81	0.76
Zone 2: Dallas		0.38	-	0.04	1.11	0.45
Zone 3: Houston		0.39	-	0.03	0.76	0.30
Zone 4: Corpus Christi		0.23	-	0.02	0.53	0.20
Zone 5: El Paso		0.33	0.13	0.04	1.08	0.44

Table 165. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x6 Walls to R-17

Table 166 presents the deemed energy savings values for insulating 2x6 walls to R-33 for all five Texas climate zones.

		Cooling	savings	gs Heating savings		
Climate zone	Baseline R-value	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	0.59	0.20	0.22	4.79	2.01
Zone 2: Dallas		1.01	_	0.11	2.94	1.20
Zone 3: Houston		1.07	_	0.09	2.02	0.80
Zone 4: Corpus Christi		0.62	_	0.04	1.42	0.54
Zone 5: El Paso		0.90	0.35	0.11	2.88	1.17
Zone 1: Amarillo	R-4	0.28	0.09	0.11	2.33	0.98
Zone 2: Dallas	-	0.48	_	0.05	1.42	0.58
Zone 3: Houston		0.49	_	0.04	0.98	0.38
Zone 4: Corpus Christi		0.29	_	0.02	0.67	0.25
Zone 5: El Paso		0.42	0.16	0.05	1.38	0.56

Table 166. Wall Insulation—Energy Savings (kWh/sq. ft.), Insulation of 2x6 Walls to R-33

Deemed Summer Demand Savings Tables

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in Table 167 through Table 170 by a factor of 0.6.

2x4 Walls

Table 167 presents the deemed summer demand savings values for insulating 2x4 walls to R-13 for all five Texas climate zones.

		Cooling type	
Climate zone	Baseline R-value	Refrigerated	Evaporative
Zone 1: Amarillo	Uninsulated	6.41E-04	2.40E-04
Zone 2: Dallas		7.32E-04	_
Zone 3: Houston		8.50E-04	_
Zone 4: Corpus Christi		4.17E-04	_
Zone 5: El Paso		6.52E-04	2.00E-04
Zone 1: Amarillo	R-4	2.35E-04	9.16E-05
Zone 2: Dallas		2.70E-04	_
Zone 3: Houston		3.02E-04	_
Zone 4: Corpus Christi		1.55E-04	_
Zone 5: El Paso		2.43E-04	7.40E-05

Table 167. Wall Insulation—Summer Peak Demand Savings (kW/sq. ft.), Insulation of 2x4 Walls to R-13

Table 168 presents the deemed summer demand savings values for insulating 2x4 walls to R-13 for all five Texas climate zones.

Table 168. Wall Insulation—Summer Peak Demand Savings,
Insulation of 2x4 Walls to R-21 (kW/sq. ft.)

		Cooling type		
Climate zone	Baseline R-value	Refrigerated	Evaporative	
Zone 1: Amarillo	Uninsulated	7.34E-04	2.66E-04	
Zone 2: Dallas		8.16E-04	_	
Zone 3: Houston		9.55E-04	_	
Zone 4: Corpus Christi		4.69E-04	_	
Zone 5: El Paso		7.32E-04	2.23E-04	

		Cooling type		
Climate zone	Baseline R-value	Refrigerated	Evaporative	
Zone 1: Amarillo	R-4	3.29E-04	1.18E-04	
Zone 2: Dallas	-	3.55E-04	-	
Zone 3: Houston	-	4.08E-04	_	
Zone 4: Corpus Christi	-	2.07E-04	_	
Zone 5: El Paso	-	3.24E-04	9.68E-05	

2x6 Walls

Table 169 presents the deemed summer demand savings values for insulating 2x6 walls to R-17 for all five Texas climate zones.

Table 169. Wall Insulation—Summer Peak Demand Savings (kW/sq. ft.), Insulation of 2x6 Walls to R-17

		Cooling type	
Climate zone	Baseline R-value	Refrigerated	Evaporative
Zone 1: Amarillo	Uninsulated	8.00E-04	2.59E-04
Zone 2: Dallas		7.87E-04	_
Zone 3: Houston		9.20E-04	_
Zone 4: Corpus Christi		4.56E-04	_
Zone 5: El Paso		8.06E-04	2.14E-04
Zone 1: Amarillo	R-4	2.88E-04	1.06E-04
Zone 2: Dallas		3.19E-04	_
Zone 3: Houston		3.67E-04	_
Zone 4: Corpus Christi		1.88E-04	_
Zone 5: El Paso		2.91E-04	8.44E-05

Table 170 presents the deemed summer demand savings values for insulating 2x6 walls to R-33 for all five Texas climate zones.

		Cooling type		
Climate zone	Baseline R-value	Refrigerated	Evaporative	
Zone 1: Amarillo	Uninsulated	7.76E-04	2.83E-04	
Zone 2: Dallas		8.77E-04	_	
Zone 3: Houston		1.02E-03	_	
Zone 4: Corpus Christi		5.08E-04	_	
Zone 5: El Paso		7.80E-04	2.38E-04	
Zone 1: Amarillo	R-4	3.64E-04	1.30E-04	
Zone 2: Dallas	-	4.09E-04	_	
Zone 3: Houston	-	4.64E-04	_	
Zone 4: Corpus Christi	-	2.40E-04	_	
Zone 5: El Paso		3.65E-04	1.08E-04	

Table 170. Wall Insulation—Summer Peak Demand Savings (kW/sq. ft.), Insulation of 2x6 Walls to R-33

Deemed Winter Demand Savings

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 171 through Table 174 by a factor of 0.24.²²⁸

²²⁸ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

2x4 Walls

Table 171 presents the deemed winter demand savings values for insulating 2x4 walls to R-13 for all five Texas climate zones.

Climate zone	Baseline R-value	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	6.93E-05	1.71E-03	8.78E-04
Zone 2: Dallas		6.66E-05	1.96E-03	1.30E-03
Zone 3: Houston		7.49E-05	1.48E-03	8.39E-04
Zone 4: Corpus Christi		4.28E-05	1.22E-03	5.78E-04
Zone 5: El Paso		2.06E-05	6.78E-04	2.84E-04
Zone 1: Amarillo	R-4	2.58E-05	6.20E-04	3.19E-04
Zone 2: Dallas		2.46E-05	7.32E-04	4.94E-04
Zone 3: Houston		2.61E-05	5.50E-04	3.20E-04
Zone 4: Corpus Christi		1.61E-05	4.51E-04	2.13E-04
Zone 5: El Paso		6.23E-06	2.23E-04	9.39E-05

Table 171. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.), Insulation of 2x4 Walls to R-13

Table 172 presents the deemed winter demand savings values for insulating 2x4 walls to R-21 for all five Texas climate zones.

Table 172. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.),
Insulation of 2x4 Walls to R-21

Climate zone	Baseline R-value	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	7.69E-05	1.89E-03	9.75E-04
Zone 2: Dallas	-	7.41E-05	2.18E-03	1.46E-03
Zone 3: Houston		8.19E-05	1.65E-03	9.40E-04
Zone 4: Corpus Christi		4.78E-05	1.36E-03	6.41E-04
Zone 5: El Paso		2.24E-05	7.37E-04	3.10E-04
Zone 1: Amarillo	R-4	3.34E-05	8.06E-04	4.16E-04
Zone 2: Dallas		3.20E-05	9.57E-04	6.50E-04
Zone 3: Houston		3.31E-05	7.19E-04	4.21E-04
Zone 4: Corpus Christi		2.11E-05	5.88E-04	2.77E-04
Zone 5: El Paso		8.01E-06	2.83E-04	1.20E-04

2x6 Walls

Table 173 presents the deemed winter demand savings values for insulating 2x6 walls to R-17 for all five Texas climate zones.

Climate zone	Baseline R-value	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	6.99E-05	1.76E-03	9.09E-04
Zone 2: Dallas		7.01E-05	2.07E-03	1.40E-03
Zone 3: Houston		7.86E-05	1.57E-03	9.10E-04
Zone 4: Corpus Christi		4.58E-05	1.29E-03	6.08E-04
Zone 5: El Paso		1.84E-05	6.24E-04	2.64E-04
Zone 1: Amarillo	R-4	2.68E-05	6.93E-04	3.58E-04
Zone 2: Dallas		2.84E-05	8.49E-04	5.84E-04
Zone 3: Houston		2.96E-05	6.40E-04	3.82E-04
Zone 4: Corpus Christi		1.90E-05	5.19E-04	2.41E-04
Zone 5: El Paso		5.59E-06	2.06E-04	8.81E-05

Table 173. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.),Insulation of 2x6 Walls to R-17

Table 174 presents the deemed winter demand savings values for insulating 2x6 walls to R-33 for all five Texas climate zones.

Table 174. Wall Insulation—Winter Peak Demand Savings (kW/sq. ft.), Insulation of 2x6 Walls to R-33

Climate zone	Baseline R-value	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	Uninsulated	7.66E-05	1.95E-03	1.00E-03
Zone 2: Dallas		7.77E-05	2.31E-03	1.56E-03
Zone 3: Houston		8.62E-05	1.75E-03	1.02E-03
Zone 4: Corpus Christi		5.11E-05	1.43E-03	6.73E-04
Zone 5: El Paso		1.96E-05	6.66E-04	2.82E-04
Zone 1: Amarillo	R-4	3.35E-05	8.76E-04	4.53E-04
Zone 2: Dallas		3.60E-05	1.08E-03	7.44E-04
Zone 3: Houston		3.72E-05	8.17E-04	4.92E-04
Zone 4: Corpus Christi		2.43E-05	6.59E-04	3.06E-04
Zone 5: El Paso		6.87E-06	2.48E-04	1.06E-04

Example Deemed Savings Calculation

Example 1. A home with uninsulated 2x4 walls in Climate Zone 1 with evaporative cooling and an electric resistance furnace insulates 750 square feet to R-13 with fiberglass batt insulation.

Energy Savings = $(0.17 + 3.96) \times 750 = 3,091.5 \, kWh$

Summer Peak Demand Savings = $2.40 \times 10^{-4} \times 750 = 0.18 \, kW$

Winter Peak Demand Savings = $1.71 \times 10^{-3} \times 750 = 1.28 \, kW$

Example 2. A home in Climate Zone 4 with uninsulated 2x6 walls with a central air conditioning unit and a gas furnace insulates 500 square feet to R-21 with closed-cell spray foam.

Energy Savings = $(0.56 + 0.04) \times 500 = 300.0 \, kWh$ Summer Peak Demand Savings = $4.56 \times 10^{-4} \times 500 = 0.23 \, kW$ Winter Peak Demand Savings = $4.58 \times 10^{-5} \times 500 = 0.02 \, kW$

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

According to the GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007), the Estimated Useful Life is 25 years for wall insulation.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)

- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Square footage of retrofitted wall area (gross wall area excluding window and door area)

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 58. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 22241, Item 62. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 41070. Petition of El Paso Electric Company to Approve Revisions to Residential and Commercial Deemed Savings Based on Climate Data Specific to El Paso, Texas. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Added detail on methodology and model characteristics.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. Multiplier provided to adjust cooling side savings for homes with evaporative cooling due to lower energy usage and demand associated with evaporative coolers relative to refrigerated air. Climate Zone 2 savings values awarded for Climate Zone 5 homes with heat pumps.
v3.1	11/05/2015	TRM v3.1 update. Provided example savings calculations.
v4.0	8/31/2016	TRM v4.0 update. Updated energy and demand savings per new prototype energy simulation models. Added separate savings for 2x4 and 2x6 wall framing and for homes with central AC versus evaporative cooling. Added a two-tier baseline definition of R-0 and R-4.

Table 175. Wall Insulation—Revision History

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 update. Make an explicit allowance for cellulose insulation.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Added space heat adjustment factor and electric resistance documentation requirement.
v9.0	10/2021	TRM v9.0 update. No revision.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. Added electric resistance documentation adjustment factor.

2.3.5 Floor Insulation Measure Overview

TRM Measure ID: R-BE-FI Market Sector: Residential Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Floor insulation is installed on the underside of floor areas sitting below conditioned space. Typically, it is installed in ventilated crawlspaces. Savings are presented per square foot of treated floor area.

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes, or to customers in TRM Climate Zones 1 and 5 who have evaporative cooling systems. Homes must be centrally heated with either an electric resistance furnace or a heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes with central refrigerated air.

Homes with gas heating are disqualified for adding floor insulation since this may result in an energy penalty due to floors not getting cooled from the ground during summer.

Baseline Condition

The baseline is a house with pier and beam construction and no floor insulation against the floor of the conditioned area.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²²⁹ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²³⁰ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

A floor insulation level of R-19 is recommended for site-built homes throughout Texas as prescribed by DOE and Texas Department of Housing and Community Affairs (TDHCA) programs. Batt insulation is recommended in most cases and must have the vapor barrier installed facing up and against the floor or conditioned area. Insulation should be attached or secured so that it can reasonably be expected to remain in place for at least 10 years.

Typical floor construction depth of manufactured homes usually does not allow R-19 batt to be installed within the floor joists, so R-15 loose-fill insulation is recommended by TDHCA.

A minimum of 24-inch clearance from the bottom of the insulation to the ground is required by the Occupational Safety and Health Association (OSHA).

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Calibrated simulation modeling was used to develop these deemed savings values.

Savings values for the deemed savings estimates for this measure were developed using demand and energy savings calculated using BEopt 2.6, running Energy Plus 8.1 as the underlying simulation engine. To model this measure, the prototype home models for each climate zone were modified as follows: slab foundation was replaced with a crawlspace. A 5/8" thick wood floor is also specified.

The model runs calculated energy use for the prototypical home prior to the installation of the floor insulation measure. Next, change-case models were run to calculate energy use with the floor insulation measure in place.

²²⁹ Electric Resistance Heating: <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²³⁰ Portable Heaters: <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

Shell characteristic	Value	Source
Foundation	Crawlspace	Skirting around the perimeter is assumed uninsulated and vented. The ground under the home is assumed to be bare, without any type of moisture barrier.
Base Floor Insulation	R-3.1	BEopt default for floor assembly, assuming 5/8" thick hardwood floor without carpet or another type of covering.
Change Floor Insulation	R-19 (except for manufactured housing, R-15)	Efficiency measure - retrofit insulation level as required by DOE and Texas Department of Housing and Community Affairs programs in Texas. Due to the typical floor joists depths found in manufactured housing, TDHCA recommends R-15 loose-fill insulation for manufactured housing and other non-site-built homes.

Table 176. Floor Insulation—Prototypical Home Characteristics

Deemed Energy Savings Tables

Table 177 through Table 181 present energy savings on a kWh per square foot of insulation installed basis for all five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in Table 177 through Table 181 by a factor of 0.6. Similarly for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 177 through Table 181 by a factor of 0.24.²³¹

	Cooling savings		Heating	savings
Home type	Refrigerated	Evaporative	Electric resistance	Heat pump
Site-built home	-0.13	-0.07	1.72	0.68
Manufactured home	-0.11	-0.06	1.52	0.60

Table 177.	Floor Insulation-	-Climate Zone 1:	Amarillo.	Energy 3	Savings	(kWh/sa.	ft.)
	i looi moulation		. <i>i</i>		ournigo,	(,

Table 178	Floor Insulation-	-Climate Zone 2 [.] Dallas	Energy Savings	kWh/sa ft	۱
	i looi msulation—	-Chimale Lone L. Danas,	Lifergy Savings	KWWIW34. IL	•1

	Cooling savings		Heating savings	
Home type	Refrigerated	Evaporative	Electric resistance	Heat pump
Site-built home	-0.12	-	0.96	0.38
Manufactured home	-0.10	-	0.85	0.33

²³¹ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields $10,200 \div 42,000 = 0.24$.

	Cooling savings		Heating savings	
Home type	Refrigerated	Evaporative	Electric resistance	Heat pump
Site-built home	-0.12	-	0.63	0.24
Manufactured home	-0.10	-	0.56	0.21

Table 179. Floor Insulation—Climate Zone 3: Houston, Energy Savings (kWh/sq. ft.)

Table 180. Floor Insulation—Climate Zone 4: Corpus Christi, Energy Savings (kWh/sq. ft.)

	Cooling savings		Heating savings	
Home type	Refrigerated	Evaporative	Electric resistance	Heat pump
Site-built home	-0.07	-	0.40	0.15
Manufactured home	-0.06	-	0.35	0.13

Table 181.	Floor Insulation-	-Climate Zone 5: El	l Paso, Energy	Savings (kWh/se	a. ft.)
			i i uso, Encigy	ouvings (kwii/s	1

	Cooling savings		Heating savings	
Home type	Refrigerated	Evaporative	Electric resistance	Heat pump
Site-built home	-0.16	-0.07	1.10	0.43
Manufactured home	-0.13	-0.06	0.97	0.38

Deemed Summer Demand Savings Tables

Table 182 through Table 186 present the deemed summer demand savings (kW) for all five Texas climate zones.

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in Table 182 through Table 186 by a factor of 0.6.

Table 182. Floor Insulation—Climate Zone 1: Amarillo, Summer Peak Demand Savings (kW/sq. ft.)

Home type	Refrigerated	Evaporative
Site-built home	6.17E-06	-1.52E-05
Manufactured home	5.48E-06	-1.30E-05

Table 183. Floor Insulation—Climate Zone 2: Dallas, Summer Peak Demand Savings (kW/sq. ft.)

Home type	Refrigerated	Evaporative
Site-built home	3.10E-05	_
Manufactured home	2.75E-05	_

Table 184. Floor Insulation—Climate Zone 3: Houston, Summer Peak Demand Savings (kW/sq. ft.)

Home type	Refrigerated	Evaporative
Site-built home	3.36E-05	-
Manufactured home	2.77E-05	_

Table 185. Floor Insulation—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings (kW/sq. ft.)

Home type	Refrigerated	Evaporative
Site-built home	3.58E-05	-
Manufactured home	3.07E-05	_

Table 186. Floor Insulation—Climate Zone 5: El Paso, Summer Peak Demand Savings (kW/sq. ft.)

Home type	Refrigerated	Evaporative
Site-built home	6.29E-06	-1.34E-06
Manufactured home	8.30E-07	1.85E-07

Deemed Winter Demand Savings Tables

Table 187 through Table 191 present the deemed winter demand savings for all five Texas climate zones.

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 187 through Table 191 by a factor of 0.24.²³²

Table 187. Floor Insulation—Climate Zone 1: Amarillo, Winter Peak Demand Savings (kW/sq. ft.)

Home type	Electric resistance	Heat pump
Site-built home	5.23E-04	2.55E-04
Manufactured home	4.62E-04	2.25E-04

Table 188. Floor Insulation—Climate Zone 2: Dallas, Winter Peak Demand Savings (kW/sq. ft.)

Home type	Electric resistance	Heat pump
Site-built home	5.19E-04	2.88E-04
Manufactured home	4.56E-04	2.50E-04

²³² This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Table 189. Floor Insulation—Climate Zone 3: Houston, Winter Peak Demand Savings (kW/sq. ft.)

Home type	Electric resistance	Heat pump
Site-built home	4.22E-04	2.03E-04
Manufactured home	3.64E-04	1.74E-04

Table 190. Floor Insulation—Climate Zone 4: Corpus Christi, Winter Peak Demand Savings (kW/sq. ft.)

Home type	Electric resistance	Heat pump
Site-built home	3.51E-04	1.53E-04
Manufactured home	3.02E-04	1.31E-04

Table 191. Floor Insulation—Climate Zone 5: El Paso, Winter Peak Demand Savings (kW/sq. ft.)

Home type	Electric resistance	Heat pump
Site-built home	3.54E-04	1.44E-04
Manufactured home	3.19E-04	1.30E-04

Example Deemed Savings Calculation

Example 1. A manufactured home in Climate Zone 5 with evaporative cooling and an electric resistance furnace insulates 500 square feet.

Energy Savings = $(-0.06 + 0.97) \times 500 = 455.0 \, kWh$

Summer Peak Demand Savings = $1.85 \times 10^{-7} \times 500 = 0.00 \, kW$

Winter Peak Demand Savings = $3.19 \times 10^{-4} \times 500 = 0.16 \, kW$

Example 2. A site-built home in Climate Zone 2 with an air-source heat pump insulates 825 square feet.

Energy Savings = $(-0.12 + 0.38) \times 825 = 214.5 \, kWh$

Summer Peak Demand Savings = $3.10 \times 10^{-5} \times 825 = 0.03 \, kW$

Winter Peak Demand Savings = $2.88 \times 10^{-4} \times 825 = 0.24 \, kW$

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

According to the GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007), the Estimated Useful Life is 25 years for floor insulation.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are: The climate zone

- Climate zone or county
- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Home type (site built or manufactured)
- Square footage of installed insulation

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 62. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 41070. Petition of El Paso Electric Company to Approve Revisions to Residential and Commercial Deemed Savings Based on Climate Data Specific to El Paso, Texas. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of Change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Added detail on methodology and model characteristics.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. Multiplier provided to adjust cooling side savings for homes with evaporative cooling due to lower energy usage and demand associated with evaporative coolers relative to refrigerated air. Climate Zone 2 savings values awarded for Climate Zone 5 homes with heat pumps.
v3.1	11/05/2015	TRM v3.1 update. Provided example savings calculations.
v4.0	10/10/2016	TRM v4.0 update. Updated energy and demand savings per new prototype energy simulation models. Added separate savings for homes with evaporative cooling. Disqualified homes with gas heating for adding floor insulation.
v5.0	10/2017	TRM v5.0 update. Added an explicit reference to mini-split technology.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Added space heat adjustment factor and electric resistance documentation requirement.
v9.0	10/2021	TRM v9.0 update. No revision.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. Added electric resistance documentation adjustment factor.

Table 192. Floor Insulation—Revision History

2.3.6 Duct Insulation Measure Overview

TRM Measure ID: R-BE-DI Market Sector: Residential Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

This measure consists of the installation of duct insulation with a minimum R value of 5.6 or 8.0 to uninsulated metal supply and return ductwork, located in unconditioned space that previously had no existing insulation. This measure applies to residential retrofit applications.

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes. Homes must be centrally heated with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. Homes heated with gas or electric resistance space heating are not eligible to claim heating savings.

Baseline Condition

The baseline for this measure is uninsulated sheet metal ducts or insulated metal ducts in which the insulation has failed. Failed insulation is insulation which has non-repairable tears to the vapor barrier or exhibits gaps with exposed metal between the insulation. Flex ducts and fiber board ducts are not eligible for this measure. The ducts must be located in unconditioned spaces, such as attics or crawl spaces. Old ductwork insulation must be removed prior to installation of new duct wrap insulation.

Unconditioned space is defined as a space which is neither directly nor indirectly conditioned and is isolated from conditioned space by partitions, such as walls and/or closeable doors and ceilings. The two specified locations available for claimed savings are attics and crawl spaces.

High-Efficiency Condition

The high-efficiency condition for this measure requires that ducts must be insulated with duct wrap to an R-value of 5.6 or 8.0.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

This measure references deemed savings from the Arkansas Technical Reference Manual (TRM) v9.1 where calibrated simulation modeling was used to develop these deemed savings.²³³ Specifically, these deemed savings estimates were developed using BEopt, running EnergyPlus as the underlying simulation engine. Since duct insulation savings are sensitive to weather, savings were modeled using typical meteorological year (TMY) 3 weather data.

Arkansas savings were mapped to Texas climate zones by comparing cooling and heating degree days developed using TMY data. Since TMY3 data is no longer accessible through the National Solar Radiation Database (NSRDB) Viewer, degree days were compared using TMY 2020 weather data.²³⁴

Degree day ratios were derived by dividing Texas cooling and heating degree days by the closest degree day match among Arkansas climate zones. These ratios were multiplied against corresponding Arkansas TRM deemed savings yielding savings values adjusted for Texas climate. The resulting ratios are specified in Table 193.

Climate zone	Cooling AF	Heating AF
Zone 1: Amarillo	0.95	1.02
Zone 2: Dallas	1.06	0.88
Zone 3: Houston	1.12	0.56
Zone 4: Corpus Christi	1.44	0.27
Zone 5: El Paso	0.99	0.99

Table 193. Duct Insulation—Cooling and Heating Adjustment Factors (AF)²³⁵

Deemed Energy Savings Tables

Table 194 through Table 198 present the energy savings (kWh) in the five Texas climate zones per square foot of exposed metal duct area located in an unconditioned attic or crawl space. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

²³³ Arkansas Public Service Commission. Arkansas TRM v9.1

²³⁴ NSRDB Viewer: <u>https://nsrdb.nrel.gov/</u>.

²³⁵ These adjustment factors were multiplied against respective cooling and heating savings from the Arkansas TRM v9.1 Duct Insulation measure. The cooling factor for Amarillo was applied against Arkansas Climate Zone 8 (Fort Smith), and the heating factor for Amarillo was applied against Arkansas Climate Zone 9 (Fayetteville). Factors for all remaining Texas climate zones were applied against savings for Arkansas Climate Zone 6 (El Dorado).

Table 194. Duct Insulation—Climate Zone 1: Amarillo, Energy Savings (kWh/sq. ft.)

Unconditioned	Refrigerated		Heating savings	
duct location and added R-value	cooling savings	Gas	Electric resistance	Heat pump
Attic to R-8	0.093	_	0.354	0.347
Attic to R-5.6	0.048	_	0.182	0.177
Crawl space to R-8	0.064	_	0.352	0.338
Crawl space to R-5.6	0.032	_	0.180	0.173

Table 195. Duct Insulation—Climate Zone 2: Dallas, Energy Savings (kWh/sq. ft.)

Unconditioned	Refrigerated		Heating savings	
duct location and added R-value	cooling savings	Gas	Electric resistance	Heat pump
Attic to R-8	0.132	_	0.224	0.198
Attic to R-5.6	0.068	_	0.114	0.102
Crawl space to R-8	0.086	_	0.252	0.209
Crawl space to R-5.6	0.043	_	0.129	0.108

Table 196. Duct Insulation—Climate Zone 3: Houston, Energy Savings (kWh/sq. ft.)

Unconditioned	Refrigerated		Heating savings	
duct location and added R-value	cooling savings	Gas	Electric resistance	Heat pump
Attic to R-8	0.139	_	0.142	0.125
Attic to R-5.6	0.071	_	0.072	0.064
Crawl space to R-8	0.090	_	0.159	0.132
Crawl space to R-5.6	0.046	_	0.082	0.068

Table 197. Duct Insulation—Climate Zone 4: Corpus Christi, Energy (kWh/sq. ft.)

Unconditioned	Refrigerated		Heating savings	
duct location and added R-value	cooling savings	Gas	Electric resistance	Heat pump
Attic to R-8	0.180	_	0.068	0.060
Attic to R-5.6	0.092	_	0.035	0.031
Crawl space to R-8	0.117	_	0.077	0.064
Crawl space to R-5.6	0.059	_	0.039	0.033

Unconditioned	Refrigerated		Heating savings	
duct location and added R-value	cooling savings	Gas	Electric resistance	Heat pump
Attic to R-8	0.123	_	0.253	0.223
Attic to R-5.6	0.063	_	0.129	0.115
Crawl space to R-8	0.080	_	0.285	0.236
Crawl space to R-5.6	0.040	_	0.146	0.122

Table 198. Duct Insulation—Climate Zone 5: El Paso, Energy Savings (kWh/sq. ft.)

Deemed Summer Demand Savings Tables

Table 199 through Table 203 present the summer demand savings (kW) in the five Texas climate zones per square foot of exposed metal duct area located in an unconditioned attic or crawl space.

Table 199. Duct Insulation—Climate Zone 1: Amarillo, Summer Peak Demand Savings (kW/sq. ft.)

Unconditioned duct location and added R-value	Demand savings (kW/sq. ft.)
Attic to R-8	0.00016
Attic to R-5.6	0.00009
Crawl space to R-8	0.00004
Crawl space to R-5.6	0.00002

Table 200. Duct Insulation—Climate Zone 2: Dallas, Summer Peak Demand Savings (kW/sq. ft.)

Unconditioned duct location and added R-value	Demand savings (kW/sq. ft.)
Attic to R-8	0.00020
Attic to R-5.6	0.00011
Crawl space to R-8	0.00007
Crawl space to R-5.6	0.00003

Unconditioned duct location and added R-value	Demand savings (kW/sq. ft.)
Attic to R-8	0.00021
Attic to R-5.6	0.00011
Crawl space to R-8	0.00008
Crawl space to R-5.6	0.00003

Table 201. Duct Insulation—Climate Zone 3: Houston, Summer Peak Demand Savings (kW/sq. ft.)

Table 202. Duct Insulation—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings (kW/sq. ft.)

Unconditioned duct location and added R-value	Demand savings (kW/sq. ft.)
Attic to R-8	0.00027
Attic to R-5.6	0.00014
Crawl space to R-8	0.00010
Crawl space to R-5.6	0.00004

Table 203. Duct Insulation—Climate Zone 5: El Paso, Summer Peak Demand Savings (kW/sq. ft)

Unconditioned duct location and added R-value	Demand savings (kW/sq. ft.)
Attic to R-8	0.00019
Attic to R-5.6	0.00010
Crawl space to R-8	0.00007
Crawl space to R-5.6	0.00003

Deemed Winter Demand Savings Tables

Winter demand savings are not specified for this measure at this time. They will be added when savings are updated to reflect Texas consumption data.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

According to the GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007),²³⁶ the estimated useful life is 20 years for duct insulation.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Uninsulated duct location
- R-value of installed insulation
- Square footage of treated duct area in unconditioned space
- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 204. Duct Insulation—Revision History

TRM version	Date	Description of change
v11.0	10/2023	TRM v11.0 origin.

²³⁶ GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007). <u>http://library.cee1.org/sites/default/files/library/8842/CEE_Eval_MeasureLife</u> <u>StudyLightsandHVACGDS_1Jun2007.pdf</u>.
2.3.7 Radiant Barriers Measure Overview

TRM Measure ID: R-BE-RB Market Sector: Residential, low-Income, and hard-to-reach Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Radiant barriers are a highly reflective material designed to block radiant heat transfer between a roof and attic space insulation. They typically consist of a metallic foil material (usually aluminum) and are generally installed on the roof decking or beneath roof sheathing. Radiant barriers are most effective at reducing cooling consumption by reflecting heat away from a home.

Eligibility Criteria

This measure is only applicable to retrofit applications. All radiant barriers should be installed according to the Reflective Insulation Manufacturers Association International (RIMA-I) Handbook, Section 7.4.²³⁷ However, horizontal installation is not eligible due to the potential of moisture/dust accumulation and wear-and-tear damage to the radiant barrier that may negatively impact product performance.

A radiant barrier cannot be in contact with any other materials on its underside. Therefore, once a radiant barrier is installed on the roof decking, no additional roof deck insulation can be installed. However, additional insulation may still be added where it is not in contact (e.g., attic floor).

A study performed by RIMA-I found that none of the coating-type products currently on the market had an emittance of 0.10 or lower as required by the standards set by the American Society for Testing and Materials (ASTM) for a product to be considered a radiant barrier.²³⁸ Therefore, interior radiation control coatings are ineligible to use this measure.

²³⁷ RIMA-I Handbook. <u>https://rimainternational.org/wp-content/uploads/2011/01/HandbookAll-2014-Final-1.pdf</u>.

²³⁸ "Radiant Barrier and STS Interior Coatings," RIMA International. <u>https://rimainternational.org/technical/ircc/</u>.

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes. Homes must be centrally heated with either a furnace (gas or electric resistance) or heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that are specified for homes with central refrigerated air. Customers participating in HTR or LI programs are also eligible to claim reduced heating savings for homes heated with electric resistance space heaters by applying an adjustment to deemed savings that are specified for that heat type.

Baseline Condition

The baseline condition is defined as a residence with no existing radiant barrier installed on roof decking.

High-Efficiency Condition

The high efficiency condition is defined as a radiant barrier installed on roof decking. The radiant barrier must be compliant with the standards set by RIMA-I, including proper attic ventilation. A list of verified products is available on the RIMA-I website.²³⁹

Physical property	Test method or standard	Requirement
Surface emittance	ASTM C 1371	0.1 or less
Water vapor transmission	ASTM E 96	0.02 for vapor retarder; 0.5 or greater for
	Procedure A desiccant method	perforated products
	Surface burning	
Flame spread	ASTM E 84	25 or less
Smoke density	ASTM E 84	450 or less
Corrosivity	ASTM D 3310	Corrosion on less than two percent of the affected surface
Tear resistance	ASTM D 2261	N/A
	Adhesive performar	nce
Bleeding	Section 10.1 of ASTM C 1313	Bleeding of delamination of less than two percent of the surface area
Pliability	Section 10.2 of ASTM C 1313	No cracking or delamination
Mold and mildew	ASTM C 1338	No growth when visually examined under 5x magnification
Tensile strength	ASTM D 2261	Report tearing strength in machine direction and cross direction

Table 205. Radiant Barriers—RIMA-I Product Testing Requirements²⁴⁰

²³⁹ RIMA International verified products. <u>https://rimainternational.org/verify/</u>.

²⁴⁰ RIMA International Product Testing Requirements. <u>https://rimainternational.org/technical/testing/</u>.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

This measure references deemed savings from the Arkansas Technical Reference Manual (TRM) v9.0 where calibrated simulation modeling was used to develop these deemed savings.²⁴¹ Specifically, these deemed savings estimates were developed using BEopt, running EnergyPlus as the underlying simulation engine. Since radiant barrier savings are sensitive to weather, savings were modeled using typical meteorological year (TMY) 3 weather data.

Arkansas savings were mapped to Texas climate zones by comparing cooling and heating degree days developed using TMY data. Since TMY3 data is no longer accessible through the National Solar Radiation Database (NSRDB) Viewer, degree days were compared using TMY 2020 weather data.²⁴²

Degree day ratios were derived by dividing Texas cooling and heating degree days by the closest degree day match among Arkansas climate zones. These ratios were multiplied against corresponding Arkansas TRM deemed savings yielding savings values adjusted for Texas climate. The resulting ratios are specified in Table 206.

Climate zone	Cooling AF	Heating AF
Zone 1: Amarillo	0.95	1.02
Zone 2: Dallas	1.06	0.88
Zone 3: Houston	1.12	0.56
Zone 4: Corpus Christi	1.44	0.27
Zone 5: El Paso	0.99	0.99

Table 206. Radiant Barriers—Cooling and Heating Adjustment Factors (AF)²⁴³

Deemed Energy Demand Savings Tables

Table 207 through Table 211 present the energy savings (kWh) in the five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

²⁴¹ Arkansas Public Service Commission. AR TRM v9.0. <u>http://www.apscservices.info/EEInfo/TRMV9.0.pdf</u>.

²⁴² NSRDB Viewer: <u>https://nsrdb.nrel.gov/</u>.

²⁴³ These adjustment factors were multiplied against respective cooling and heating savings from the Arkansas TRM v9.0 Radiant Barriers measure. The cooling factor for Amarillo was applied against Arkansas Climate Zone 8 (Fort Smith), and the heating factor for Amarillo was applied against Arkansas Climate Zone 9 (Fayetteville). Factors for all remaining TX climate zones were applied against savings for Arkansas Climate Zone 6 (El Dorado).

For customers who participate in HTR or LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in Table 207 through Table 211 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 207 through Table 211 by a factor of 0.24.²⁴⁴

Savings are specified per square foot of ceiling area over conditioned space directly below an unconditioned attic where the radiant barrier is installed. The square footage should not reflect the total area of installed radiant barrier.

Radiant barrier with existing	Cooling savings	Heating savings		5
ceiling insulation base R-value	Refrigerated air	Gas	Electric resistance	Heat pump
≤ R-19	0.2234	0.0072	0.2099	0.1106
> R-19	0.1350	0.0031	0.0962	0.0573

Table 207. Radiant Barriers—Climate Zone 1: Amarillo, Energy Savings (kWh/sq. ft.)

Table 208. Radiant Barriers—Climate Zone 2: Dallas, Energy Savings (kWh/sq. ft.)

Radiant barrier	Cooling savings	Heating savings		5
ceiling insulation base R-value	Refrigerated air	Gas	Electric resistance	Heat pump
≤ R-19	0.2887	0.0044	0.1449	0.0334
> R-19	0.1777	0.0026	0.0676	0.0132

Table 200	Dedient Develope	Climete Zene	0		Continent		£4 \
Table 209.	Radiant Barriers-	-Climate Zone	3: Houston,	Energy	Savings	(KVVN/SQ	. IT.)

Radiant barrier	Cooling savings	Heating savings		5
ceiling insulation base R-value	Refrigerated air	Gas	Electric resistance	Heat pump
≤ R-19	0.3046	0.0028	0.0916	0.0211
> R-19	0.1874	0.0017	0.0427	0.0083

²⁴⁴ This factor was derived based on expected capacity reduction assuming 1,200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42, 000 BTU for central electric furnaces and two 1,500 W portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 / 42,000 = 0.24.

Radiant barrier	Cooling savings	Heating savings		5
ceiling insulation base R-value	Refrigerated air	Gas	Electric resistance	Heat pump
≤ R-19	0.3937	0.0013	0.0443	0.0102
> R-19	0.2423	0.0008	0.0207	0.0040

Table 210. Radiant Barriers—Climate Zone 4: Corpus Christi, Energy Savings (kWh/sq. ft.)

Radiant barrier	Cooling savings	Heating savings		
ceiling insulation base R-value	Refrigerated	Gas	Electric resistance	Heat pump
≤ R-19	0.2691	0.0050	0.1636	0.0377
> R-19	0.1656	0.0030	0.0764	0.0149

Deemed Summer Demand Savings Tables

Table 212 presents the summer demand savings (kW) in the five Texas climate zones per square foot of ceiling area over conditioned space directly below an unconditioned attic where the radiant barrier in installed.

For customers who participate in HTR or LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying the appropriate cooling value in Table 212 by a factor of 0.6.

for Residences with Refrigerated Air (kwh/sq. ft.)					
Radiant barrier with existing ceiling insulation base R-value	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
≤ R-19	0.00014	0.00015	0.00016	0.00020	0.00014
> R-19	0.00008	0.00010	0.00010	0.00013	0.00009

Table 212. Radiant Barriers—Summer Peak Demand Savings for Residences with Refrigerated Air (kWh/sq. ft.)

Deemed Winter Demand Savings Tables

Winter demand savings are not specified for this measure at this time. They will be added when savings are updated to reflect Texas consumption data.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

Radiant barriers and other reflective insulation systems have similar lifetime expectations to other attic insulation measures.²⁴⁵ The estimated useful life (EUL) of radiant barriers is 25 years for radiant barriers based on the GDS Associates Measure Life Report value for ceiling insulation.

This value matches lifetime assumptions for radiant barriers from both Oak Ridge National Laboratory (ORNL)²⁴⁶ and National Renewable Energy Laboratory (NREL).²⁴⁷

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Cooling type (central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Baseline R-value of existing ceiling insulation (\leq R-19, > R-19)
- Square footage of ceiling area over conditioned space directly below an unconditioned attic where the radiant barrier is installed
- Manufacturer and product name/model number

References and Efficiency Standards

Petitions and Rulings

Not applicable.

²⁴⁵ US Department of Energy (DOE) Insulation Fact Sheet.

https://web.ornl.gov/sci/buildings/docs/factSheets/Insulation-FactSheet-2008.pdf. ²⁴⁶ "Radiant Barrier: Effect of Radiant Barriers on Heating and Cooling Bils", ORNL. https://web.ornl.gov/sci/buildings/tools/radiant/rb2/.

²⁴⁷ National Residential Efficiency Measures Database, NREL. <u>https://remdb.nrel.gov/measures.php?gld=13&ctId=51</u>.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 213. Radiant Barriers—Revision History

TRM version	Date	Description of change
v10.0	10/2022	TRM v10.0 origin.
v11.0	10/2023	TRM v11.0 update. Clarified savings normalization by area. Added electric resistance documentation adjustment factor.

2.3.8 Cool Roofs Measure Overview

TRM Measure ID: R-BE-CR Market Sector: Residential Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Reflective roofing materials reduce the overall heat load on a home by reducing the total heat energy absorbed into the building system from incident solar radiation. This reduction in total load provides space cooling energy savings during the cooling season, but reduces free heat during the heating season, so the measure saves energy in the summer but uses more energy in winter. As such, cool roofs are most beneficial in warmer climates and may not be recommended for homes where the primary heat source is electric resistance. The measure is for retrofit of existing homes.

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes, or to customers in TRM Climate Zones 1 and 5 who have evaporative cooling systems. Homes must be centrally heated with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with gas or electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes with central refrigerated air.

Baseline Condition

The baseline condition is an existing home with a standard medium- or dark-colored roof.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²⁴⁸ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²⁴⁹ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

The ENERGY STAR roofing products certification program was discontinued effective June 1, 2022.²⁵⁰ Moving forward, installed roofing products will still be required to demonstrate compliance with the previous ENERGY STAR specification below.²⁵¹

In lieu of the former ENERGY STAR list of qualified products, roofing products must now have a performance rating that is validated by the Cool Roof Rating Council (CRRC)^{252,253} and be listed on the CRRC Rated Roof Products Directory.²⁵⁴ This is consistent with the former ENERGY STAR test criteria, which allows for products already participating in the CRRC Product Rating Program to submit solar reflectance and thermal emittance product information derived from CRRC certification.

The ENERGY STAR program classifies roofs with a slope greater than 2/12 as having a steep slope and roofs with a slope less than or equal to 2/12 as low slope roofs. ENERGY STAR performance specifications for cool roof products for use on roofs with steep slopes and low slopes are provided in Table 214.

Roof slope	Characteristic	Performance specification
Low slope	Initial solar reflectance	≥ 0.65
<u><</u> 2/12	3-year solar reflectance	≥ 0.50
High slope > 2/12	Initial solar reflectance	≥ 0.25
	3-year solar reflectance	≥ 0.15

Table 214. Cool Roofs—ENERGY STAR Specification²⁵⁵

²⁴⁸ Electric Resistance Heating. <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²⁴⁹ Portable Heaters. <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

²⁵⁰ ENERGY STAR Roof Products Sunset Decision Memo. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Roof%20Products%20Sunset%</u> 20Decision%20Memo.pdf.

²⁵¹ ENERGY STAR Program Requirements for Roof Products v2.1. https://www.energystar.gov/ia/partners/product_specs/program_reqs/roofs_prog_req.pdf.

²⁵² CRRC guidance for roof rating alternative to discontinued ENERGY STAR[®] program. <u>https://coolroofs.org/documents/CRRC-ENERGY-STAR-Sunset-Info-Sheet-2022-03-07.pdf</u>.

²⁵³ CRRC Roof Rating Program. <u>https://coolroofs.org/programs/roof-rating-program</u>.

²⁵⁴ CRRC Rated Roof Products Directory. <u>https://coolroofs.org/directory/roof</u>.

²⁵⁵ ENERGY STAR Roof Products Specification. <u>https://www.energystar.gov/products/building_products/roof_products/key_product_criteria</u>.

If a cool roof is installed concurrently with changes to attic insulation levels, savings should be claimed for the reflective roof according to the post-retrofit (ceiling or roof deck) insulation levels. Savings for changes in insulation levels should be claimed separately according to the ceiling insulation or attic encapsulation measures, assuming the retrofit performed meets the requirements of those measures.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Calibrated simulation modeling was used to develop these deemed savings values. Specifically, these deemed savings estimates were developed using BEopt 2.6, running EnergyPlus 8.4 as the underlying simulation engine. To model this measure, the prototype home models for each climate zone were modified as follows. Roof slopes were modified to reflect representative levels for the low slope and steep slope roofs. A 1/12 slope was selected for modeling low slope roofs (defined as having slope <= 2/12), and a 4/12 slope was selected for modeling steep slope roofs (slope > 2/12). Based on the performance criteria and review of the rated 3-year reflectance of rated products listed in the CRRC database, four reflectance levels were selected for modeling: 0.2, 0.4, 0.6, and 0.8, representing 20 to 80 percent reflectance.

Because of the interplay between the performance of insulation and attic/roof deck temperatures, which are directly affected by the installation of a cool roof, savings were estimated for a range of different attic insulation scenarios: a range of ceiling insulation levels from no insulation (R-0) to R-30, and two roof deck insulation levels, R-19 and R-38, were modeled. Savings for a roof deck insulation level of R-30 are provided by interpolating between the R-19 and R-38 scenarios.

These modifications are shown in Table 215.

The model runs calculated energy use for the prototypical home prior to encapsulating the attic. Change-case models were run to calculate energy use with the floor insulation measure in place with either R-30 or R-38 insulation.

Shell characteristic	Value	Source
Base case roof material	Medium asphalt shingle, reflectance = 0.15	Prototype home default
Change case roof material	Medium asphalt shingle, reflectance = 0.2 reflectance = 0.4 reflectance = 0.6 Reflectance = 0.8	Lower reflectance levels only relevant for steep slope roofs. Modeled reflectance levels reflect midpoints of ranges: $0.15 \le R < 0.3$ Reflectance $0.3 \le R < 0.5$ Reflectance $0.5 \le R < 0.7$ Reflectance > 0.7
Roof slope: low-slope roof	1/12	Not modified between base and change cases
Roof slope: steep slope roof	4/12	Not modified between base and change cases

Table 215. Cool Roofs—Prototypical Home Characteristics

Shell characteristic	Value	Source
Ceiling (attic floor) insulation levels	< R-5 R-5 to R-8 R-9 to R-14 R-15 to R-22 R-30	Not modified between base and change cases
Roof Deck (underside) Insulation Levels	R-19 R-38	Not modified between base and change cases

Deemed Energy Savings Tables

Savings are presented first for homes with ceiling insulation and subsequently for those with roof deck insulation. For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling values in Table 216 through Table 220 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 216 through Table 220 by a factor of 0.24.²⁵⁶

Homes with Ceiling Insulation

Table 216 through Table 220 present the energy savings (kWh) for installation of a reflective roof on homes with varying levels of ceiling (attic floor) insulation for the five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types. Savings are per square foot of treated roof area.

Coiling			savings	н	leating saving	s
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
		Steep	slope			
< R-5	0.15 – 0.29	0.03	0.01	0.00	-0.05	-0.02
< R-5	0.3 – 0.49	0.15	0.06	-0.02	-0.26	-0.09
< R-5	0.5 – 0.69	0.27	0.10	-0.03	-0.47	-0.18
< R-5	<u>></u> 0.7	0.40	0.15	-0.06	-0.71	-0.26
R-5 to R-8	0.15 – 0.29	0.02	0.01	0.00	-0.04	-0.01
R-5 to R-8	0.3 – 0.49	0.12	0.04	-0.02	-0.20	-0.07
R-5 to R-8	0.5 – 0.69	0.21	0.08	-0.03	-0.36	-0.14

Table 216. Cool Roofs—Climate Zone 1: Amarillo, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

²⁵⁶ This factor was derived based on expected capacity reduction assuming 1,200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500 W portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Coiling	Installed roof	Cooling	savings	H	leating saving	s
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
R-5 to R-8	<u>></u> 0.7	0.31	0.12	-0.05	-0.54	-0.20
R-9 to R-14	0.15 – 0.29	0.02	0.01	0.00	-0.03	-0.01
R-9 to R-14	0.3 – 0.49	0.08	0.03	-0.01	-0.13	-0.05
R-9 to R-14	0.5 – 0.69	0.15	0.06	-0.03	-0.25	-0.09
R-9 to R-14	<u>></u> 0.7	0.22	0.08	-0.04	-0.37	-0.14
R-15 to R-22	0.15 - 0.29	0.01	0.00	0.00	-0.02	-0.01
R-15 to R-22	0.3 – 0.49	0.06	0.02	-0.01	-0.09	-0.04
R-15 to R-22	0.5 – 0.69	0.10	0.04	-0.02	-0.17	-0.06
R-15 to R-22	<u>></u> 0.7	0.15	0.06	-0.03	-0.25	-0.10
R-30	0.15 – 0.29	0.01	0.00	0.00	-0.01	0.00
R-30	0.3 – 0.49	0.04	0.01	-0.01	-0.06	-0.02
R-30	0.5 – 0.69	0.07	0.02	-0.02	-0.11	-0.04
R-30	<u>></u> 0.7	0.10	0.04	-0.03	-0.16	-0.06
		Low	slope			
< R-5	0.5 – 0.69	0.30	0.11	-0.04	-0.52	-0.20
< R-5	<u>></u> 0.7	0.43	0.16	-0.06	-0.77	-0.29
R-5 to R-8	0.5 – 0.69	0.23	0.09	-0.03	-0.40	-0.15
R-5 to R-8	<u>></u> 0.7	0.34	0.13	-0.05	-0.59	-0.22
R-9 to R-14	0.5 – 0.69	0.16	0.06	-0.03	-0.27	-0.10
R-9 to R-14	<u>></u> 0.7	0.23	0.09	-0.04	-0.41	-0.15
R-15 to R-22	0.5 – 0.69	0.11	0.04	-0.02	-0.19	-0.07
R-15 to R-22	<u>></u> 0.7	0.17	0.07	-0.03	-0.28	-0.11
R-30	0.5 – 0.69	0.08	0.03	-0.02	-0.13	-0.05
R-30	<u>></u> 0.7	0.12	0.05	-0.03	-0.19	-0.07

Table 217. Cool Roofs—Climate Zone 2: Dallas, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

Ceiling	Installed roof		Н	eating savings	S
insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
		Steep slope			
< R-5	0.15 – 0.29	0.05	0.00	-0.04	-0.01
< R-5	0.3 – 0.49	0.23	-0.01	-0.17	-0.07
< R-5	0.5 – 0.69	0.43	-0.01	-0.32	-0.12

Ceiling	Installed roof		H	eating savings	\$
insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
< R-5	<u>></u> 0.7	0.64	-0.02	-0.48	-0.18
R-5 to R-8	0.15 – 0.29	0.04	0.00	-0.03	-0.01
R-5 to R-8	0.3 – 0.49	0.18	-0.01	-0.13	-0.05
R-5 to R-8	0.5 – 0.69	0.34	-0.01	-0.24	-0.09
R-5 to R-8	<u>></u> 0.7	0.50	-0.02	-0.36	-0.14
R-9 to R-14	0.15 – 0.29	0.03	0.00	-0.02	-0.01
R-9 to R-14	0.3 – 0.49	0.13	-0.01	-0.09	-0.03
R-9 to R-14	0.5 – 0.69	0.24	-0.01	-0.16	-0.06
R-9 to R-14	<u>></u> 0.7	0.35	-0.02	-0.25	-0.09
R-15 to R-22	0.15 – 0.29	0.02	0.00	-0.01	0.00
R-15 to R-22	0.3 - 0.49	0.09	0.00	-0.06	-0.02
R-15 to R-22	0.5 – 0.69	0.17	-0.01	-0.11	-0.04
R-15 to R-22	<u>></u> 0.7	0.25	-0.01	-0.17	-0.06
R-30	0.15 – 0.29	0.01	0.00	-0.01	0.00
R-30	0.3 – 0.49	0.06	0.00	-0.04	-0.02
R-30	0.5 – 0.69	0.12	-0.01	-0.07	-0.03
R-30	<u>></u> 0.7	0.18	-0.01	-0.11	-0.04
		Low slope			
< R-5	0.5 – 0.69	0.47	-0.01	-0.35	-0.13
< R-5	<u>></u> 0.7	0.70	-0.02	-0.53	-0.20
R-5 to R-8	0.5 – 0.69	0.37	-0.01	-0.27	-0.10
R-5 to R-8	<u>></u> 0.7	0.55	-0.02	-0.40	-0.15
R-9 to R-14	0.5 – 0.69	0.26	-0.01	-0.19	-0.07
R-9 to R-14	<u>></u> 0.7	0.39	-0.02	-0.28	-0.10
R-15 to R-22	0.5 – 0.69	0.19	-0.01	-0.13	-0.05
R-15 to R-22	<u>></u> 0.7	0.28	-0.01	-0.19	-0.07
R-30	0.5 – 0.69	0.14	-0.01	-0.08	-0.03
R-30	<u>></u> 0.7	0.20	-0.01	-0.13	-0.05

	Installed roof		H	eating saving	S
Ceiling insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
		Steep slope			
< R-5	0.15 – 0.29	0.05	0.00	-0.02	-0.01
< R-5	0.3 – 0.49	0.26	0.00	-0.13	-0.05
< R-5	0.5 – 0.69	0.48	-0.01	-0.24	-0.09
< R-5	<u>></u> 0.7	0.71	-0.01	-0.37	-0.13
R-5 to R-8	0.15 – 0.29	0.04	0.00	-0.02	-0.01
R-5 to R-8	0.3 – 0.49	0.20	0.00	-0.10	-0.04
R-5 to R-8	0.5 – 0.69	0.37	-0.01	-0.18	-0.07
R-5 to R-8	<u>></u> 0.7	0.55	-0.01	-0.28	-0.10
R-9 to R-14	0.15 – 0.29	0.03	0.00	-0.01	-0.01
R-9 to R-14	0.3 – 0.49	0.14	0.00	-0.07	-0.03
R-9 to R-14	0.5 – 0.69	0.26	-0.01	-0.13	-0.05
R-9 to R-14	<u>></u> 0.7	0.39	-0.01	-0.19	-0.07
R-15 to R-22	0.15 – 0.29	0.02	0.00	-0.01	0.00
R-15 to R-22	0.3 – 0.49	0.10	0.00	-0.05	-0.02
R-15 to R-22	0.5 – 0.69	0.18	-0.01	-0.09	-0.03
R-15 to R-22	<u>></u> 0.7	0.27	-0.01	-0.13	-0.05
R-30	0.15 – 0.29	0.01	0.00	-0.01	0.00
R-30	0.3 – 0.49	0.06	0.00	-0.03	-0.01
R-30	0.5 – 0.69	0.12	-0.01	-0.06	-0.02
R-30	<u>></u> 0.7	0.18	-0.01	-0.08	-0.03
		Low slope			
< R-5	0.5 – 0.69	0.54	-0.01	-0.27	-0.10
< R-5	<u>></u> 0.7	0.79	-0.01	-0.41	-0.15
R-5 to R-8	0.5 – 0.69	0.42	-0.01	-0.21	-0.08
R-5 to R-8	<u>></u> 0.7	0.62	-0.01	-0.31	-0.12
R-9 to R-14	0.5 – 0.69	0.30	-0.01	-0.14	-0.05
R-9 to R-14	<u>></u> 0.7	0.44	-0.01	-0.21	-0.08

Table 218. Cool Roofs—Climate Zone 3: Houston, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

	Installed roof		H	eating saving	S
Ceiling insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
R-15 to R-22	0.5 – 0.69	0.21	-0.01	-0.10	-0.04
R-15 to R-22	<u>≥</u> 0.7	0.31	-0.01	-0.15	-0.06
R-30	0.5 – 0.69	0.14	-0.01	-0.07	-0.03
R-30	<u>></u> 0.7	0.22	-0.01	-0.10	-0.04

Table 219. Cool Roofs—Climate Zone 4: Corpus Christi, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

	Installed roof		H	leating Saving	S
Ceiling insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
		Steep slope			
< R-5	0.15 – 0.29	0.04	0.00	-0.01	0.00
< R-5	0.3 – 0.49	0.19	0.00	-0.08	-0.03
< R-5	0.5 - 0.69	0.34	0.00	-0.15	-0.06
< R-5	<u>></u> 0.7	0.50	-0.01	-0.23	-0.08
R-5 to R-8	0.15 – 0.29	0.03	0.00	-0.01	0.00
R-5 to R-8	0.3 – 0.49	0.14	0.00	-0.06	-0.02
R-5 to R-8	0.5 – 0.69	0.26	0.00	-0.11	-0.04
R-5 to R-8	<u>></u> 0.7	0.38	-0.01	-0.17	-0.06
R-9 to R-14	0.15 – 0.29	0.02	0.00	-0.01	0.00
R-9 to R-14	0.3 – 0.49	0.10	0.00	-0.04	-0.02
R-9 to R-14	0.5 – 0.69	0.17	0.00	-0.08	-0.03
R-9 to R-14	<u>></u> 0.7	0.26	0.00	-0.11	-0.04
R-15 to R-22	0.15 - 0.29	0.01	0.00	-0.01	0.00
R-15 to R-22	0.3 – 0.49	0.06	0.00	-0.03	-0.01
R-15 to R-22	0.5 - 0.69	0.12	0.00	-0.05	-0.02
R-15 to R-22	<u>></u> 0.7	0.17	0.00	-0.08	-0.03
R-30	0.15 – 0.29	0.01	0.00	0.00	0.00
R-30	0.3 – 0.49	0.04	0.00	-0.02	-0.01
R-30	0.5 – 0.69	0.07	0.00	-0.03	-0.01
R-30	<u>></u> 0.7	0.11	0.00	-0.05	-0.02

	Installed roof		H	leating Saving	s
Ceiling insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
		Low slope			
< R-5	0.5 - 0.69	0.37	0.00	-0.17	-0.07
< R-5	<u>></u> 0.7	0.54	-0.01	-0.25	-0.09
R-5 to R-8	0.5 - 0.69	0.28	0.00	-0.13	-0.05
R-5 to R-8	<u>></u> 0.7	0.41	-0.01	-0.19	-0.07
R-9 to R-14	0.5 - 0.69	0.19	0.00	-0.09	-0.03
R-9 to R-14	<u>></u> 0.7	0.28	0.00	-0.13	-0.05
R-15 to R-22	0.5 – 0.69	0.13	0.00	-0.06	-0.02
R-15 to R-22	<u>></u> 0.7	0.19	0.00	-0.08	-0.03
R-30	0.5 – 0.69	0.09	0.00	-0.04	-0.01
R-30	<u>></u> 0.7	0.13	0.00	-0.06	-0.02

Table 220. Cool Roofs—Climate Zone 5: El Paso, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

Ceiling	Ceiling Installed roof Cooling savings		Heating savings					
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump		
Steep slope								
< R-5	0.15 – 0.29	0.05	0.02	0.00	-0.05	-0.02		
< R-5	0.3 – 0.49	0.27	0.10	-0.01	-0.26	-0.09		
< R-5	0.5 – 0.69	0.50	0.19	-0.02	-0.49	-0.19		
< R-5	<u>></u> 0.7	0.74	0.29	-0.04	-0.77	-0.29		
R-5 to R-8	0.15 – 0.29	0.04	0.02	0.00	-0.04	-0.01		
R-5 to R-8	0.3 – 0.49	0.21	0.08	-0.01	-0.20	-0.07		
R-5 to R-8	0.5 – 0.69	0.39	0.15	-0.02	-0.38	-0.14		
R-5 to R-8	<u>></u> 0.7	0.58	0.23	-0.03	-0.59	-0.22		
R-9 to R-14	0.15 – 0.29	0.03	0.01	0.00	-0.03	-0.01		
R-9 to R-14	0.3 – 0.49	0.15	0.06	-0.01	-0.14	-0.05		
R-9 to R-14	0.5 – 0.69	0.27	0.11	-0.01	-0.27	-0.10		
R-9 to R-14	<u>></u> 0.7	0.41	0.16	-0.02	-0.41	-0.15		
R-15 to R-22	0.15 – 0.29	0.02	0.01	0.00	-0.02	-0.01		
R-15 to R-22	0.3 – 0.49	0.10	0.04	-0.01	-0.10	-0.04		
R-15 to R-22	0.5 – 0.69	0.19	0.08	-0.01	-0.18	-0.07		

Ceiling	Ceiling Installed roof Cooling savings		F	leating saving	s	
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
R-15 to R-22	<u>></u> 0.7	0.29	0.12	-0.02	-0.28	-0.10
R-30	0.15 – 0.29	0.01	0.01	0.00	-0.01	-0.01
R-30	0.3 – 0.49	0.07	0.03	0.00	-0.06	-0.02
R-30	0.5 – 0.69	0.13	0.05	-0.01	-0.12	-0.04
R-30	<u>></u> 0.7	0.20	0.08	-0.01	-0.18	-0.07
		Low	slope			
< R-5	0.5 – 0.69	0.57	0.22	-0.02	-0.56	-0.21
< R-5	<u>></u> 0.7	0.84	0.32	-0.04	-0.88	-0.33
R-5 to R-8	0.5 – 0.69	0.45	0.18	-0.02	-0.44	-0.16
R-5 to R-8	<u>></u> 0.7	0.66	0.26	-0.03	-0.68	-0.25
R-9 to R-14	0.5 – 0.69	0.32	0.13	-0.02	-0.31	-0.12
R-9 to R-14	<u>></u> 0.7	0.47	0.19	-0.03	-0.47	-0.18
R-15 to R-22	0.5 – 0.69	0.23	0.09	-0.01	-0.21	-0.08
R-15 to R-22	<u>></u> 0.7	0.34	0.14	-0.02	-0.32	-0.12
R-30	0.5 – 0.69	0.17	0.07	-0.01	-0.14	-0.06
R-30	<u>></u> 0.7	0.25	0.10	-0.02	-0.22	-0.08

Homes with Roof Deck Insulation

Table 221 through Table 225 present the energy savings (kWh) for the installation of a reflective roof on homes with varying levels of roof deck insulation for the five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types. Savings are per square foot of treated roof area.

Roof deck Installed roof		Cooling	Cooling savings		Heating savings		
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump	
		Stee	p slope				
R-19	0.15 – 0.29	0.00	0.00	0.00	0.00	0.00	
R-19	0.3 - 0.49	0.06	0.02	-0.01	-0.13	-0.05	
R-19	0.5 - 0.69	0.13	0.04	-0.01	-0.28	-0.11	
R-19	<u>></u> 0.7	0.20	0.07	-0.02	-0.42	-0.16	
R-30	0.15 – 0.29	0.01	0.00	0.00	-0.01	-0.01	

Table 221. Cool Roofs—Climate Zone 1: Amarillo,

Roof deck	Installed roof	Cooling	savings	Heating savings		S
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
R-30	0.3 – 0.49	0.05	0.02	-0.01	-0.12	-0.04
R-30	0.5 – 0.69	0.11	0.03	-0.01	-0.23	-0.09
R-30	<u>></u> 0.7	0.16	0.05	-0.02	-0.35	-0.14
R-38	0.15 – 0.29	0.01	0.00	0.00	-0.02	-0.01
R-38	0.3 – 0.49	0.05	0.02	-0.01	-0.11	-0.04
R-38	0.5 – 0.69	0.09	0.03	-0.01	-0.20	-0.08
R-38	<u>></u> 0.7	0.13	0.04	-0.02	-0.30	-0.12
		Low	/ slope			
R-19	0.5 – 0.69	0.13	0.04	-0.01	-0.27	-0.11
R-19	<u>></u> 0.7	0.20	0.07	-0.02	-0.42	-0.16
R-30	0.5 – 0.69	0.11	0.03	-0.01	-0.23	-0.09
R-30	<u>></u> 0.7	0.16	0.05	-0.02	-0.34	-0.13
R-38	0.5 – 0.69	0.09	0.03	-0.01	-0.20	-0.08
R-38	<u>></u> 0.7	0.13	0.04	-0.02	-0.29	-0.11

Table 222. Cool Roofs—Climate Zone 2: Dallas, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

Roof deck	Installed roof		ŀ	leating savings	
insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
		Steep slope			
R-19	0.15 – 0.29	0.00	0.00	0.00	0.00
R-19	0.3 – 0.49	0.10	0.00	-0.09	-0.03
R-19	0.5 – 0.69	0.21	-0.01	-0.18	-0.07
R-19	<u>></u> 0.7	0.32	-0.01	-0.28	-0.11
R-30	0.15 – 0.29	0.01	0.00	-0.01	-0.01
R-30	0.3 – 0.49	0.09	0.00	-0.08	-0.03
R-30	0.5 – 0.69	0.17	-0.01	-0.15	-0.06
R-30	<u>></u> 0.7	0.26	-0.01	-0.23	-0.09
R-38	0.15 – 0.29	0.02	0.00	-0.01	-0.01
R-38	0.3 – 0.49	0.08	0.00	-0.07	-0.03
R-38	0.5 – 0.69	0.14	-0.01	-0.13	-0.05
R-38	<u>></u> 0.7	0.21	-0.01	-0.19	-0.07

Roof deck	Installed roof		ŀ	leating savings	
insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
		Low slope			
R-19	0.5 – 0.69	0.21	-0.01	-0.18	-0.07
R-19	<u>></u> 0.7	0.32	-0.01	-0.28	-0.11
R-30	0.5 – 0.69	0.17	-0.01	-0.15	-0.06
R-30	<u>></u> 0.7	0.26	-0.01	-0.23	-0.09
R-38	0.5 – 0.69	0.14	-0.01	-0.13	-0.05
R-38	<u>></u> 0.7	0.21	-0.01	-0.19	-0.07

Table 223. Cool Roofs—Climate Zone 3: Houston, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

Roof deck	Installed roof		Heating savings		
insulation R-value	material 3-year reflectance	Cooling savings (refrigerated)	Gas	Electric resistance	Heat pump
		Steep slop	е		
R-19	0.15 – 0.29	0.00	0.00	0.00	0.00
R-19	0.3 - 0.49	0.11	0.00	-0.07	-0.03
R-19	0.5 - 0.69	0.22	-0.01	-0.14	-0.05
R-19	<u>></u> 0.7	0.34	-0.01	-0.22	-0.08
R-30	0.15 – 0.29	0.01	0.00	-0.01	0.00
R-30	0.3 - 0.49	0.09	0.00	-0.06	-0.02
R-30	0.5 - 0.69	0.19	0.00	-0.12	-0.04
R-30	<u>></u> 0.7	0.28	-0.01	-0.18	-0.07
R-38	0.15 – 0.29	0.02	0.00	-0.01	0.00
R-38	0.3 - 0.49	0.08	0.00	-0.06	-0.02
R-38	0.5 - 0.69	0.16	0.00	-0.10	-0.04
R-38	<u>></u> 0.7	0.23	-0.01	-0.15	-0.06
		Low slope)		
R-19	0.5 - 0.69	0.22	-0.01	-0.14	-0.06
R-19	<u>></u> 0.7	0.35	-0.01	-0.22	-0.08
R-30	0.5 - 0.69	0.19	0.00	-0.12	-0.05
R-30	<u>></u> 0.7	0.28	-0.01	-0.18	-0.07
R-38	0.5 – 0.69	0.16	0.00	-0.10	-0.04
R-38	<u>></u> 0.7	0.23	-0.01	-0.15	-0.06

Doof dook	Installed reaf		н	eating savings	
insulation	material 3-year	Cooling savings	Coo	Electric	Heat
R-value	Teneclance	(reingerated)	Gas	resistance	pump
D 40	0.45 0.00	Steep slop	e 0.00	0.00	0.00
R-19	0.15 - 0.29	0.00	0.00	0.00	0.00
R-19	0.3 – 0.49	0.09	0.00	-0.04	-0.02
R-19	0.5 – 0.69	0.17	0.00	-0.09	-0.03
R-19	<u>></u> 0.7	0.26	0.00	-0.13	-0.05
R-30	0.15 – 0.29	0.01	0.00	-0.01	0.00
R-30	0.3 – 0.49	0.08	0.00	-0.03	-0.01
R-30	0.5 - 0.69	0.14	0.00	-0.07	-0.02
R-30	<u>></u> 0.7	0.21	0.00	-0.11	-0.04
R-38	0.15 – 0.29	0.01	0.00	-0.01	0.00
R-38	0.3 – 0.49	0.07	0.00	-0.03	-0.01
R-38	0.5 – 0.69	0.12	0.00	-0.06	-0.02
R-38	<u>></u> 0.7	0.18	0.00	-0.09	-0.03
		Low slope	•		
R-19	0.5 – 0.69	0.23	-0.01	-0.29	-0.11
R-19	<u>></u> 0.7	0.36	-0.02	-0.46	-0.18
R-30	0.5 - 0.69	0.17	0.00	-0.16	-0.06
R-30	<u>≥</u> 0.7	0.26	-0.01	-0.25	-0.09
R-38	0.5 – 0.69	0.12	0.00	-0.06	-0.02
R-38	<u>></u> 0.7	0.18	0.00	-0.09	-0.03

Table 224. Cool Roofs—Climate Zone 4: Corpus Christi, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

Table 225. Cool Roofs—Climate Zone 5: El Paso, Energy Savings for Residential Reflective Roof Installation (kWh/sq. ft.)

Poof deck Installed roof		Cooling savings		Heating savings		
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Steep slope						
R-19	0.15 – 0.29	0.00	0.00	0.00	0.00	0.00
R-19	0.3 – 0.49	0.11	0.04	-0.01	-0.14	-0.05
R-19	0.5 – 0.69	0.22	0.08	-0.01	-0.28	-0.11
R-19	<u>></u> 0.7	0.35	0.12	-0.02	-0.45	-0.17
R-30	0.15 – 0.29	0.01	0.01	0.00	-0.01	-0.01

Roof deck	Installed roof	Cooling	Cooling savings		Heating savin	gs
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
R-30	0.3 – 0.49	0.10	0.03	0.00	-0.12	-0.04
R-30	0.5 – 0.69	0.19	0.06	-0.01	-0.23	-0.09
R-30	<u>></u> 0.7	0.28	0.10	-0.01	-0.37	-0.14
R-38	0.15 – 0.29	0.02	0.01	0.00	-0.02	-0.01
R-38	0.3 – 0.49	0.09	0.03	0.00	-0.11	-0.04
R-38	0.5 – 0.69	0.16	0.05	-0.01	-0.20	-0.08
R-38	<u>></u> 0.7	0.23	0.08	-0.01	-0.31	-0.12
		Low s	lope			
R-19	0.5 – 0.69	0.23	0.08	-0.01	-0.29	-0.11
R-19	<u>></u> 0.7	0.36	0.12	-0.02	-0.46	-0.18
R-30	0.5 – 0.69	0.19	0.06	-0.01	-0.24	-0.09
R-30	<u>></u> 0.7	0.29	0.10	-0.01	-0.38	-0.15
R-38	0.5 – 0.69	0.16	0.05	-0.01	-0.21	-0.08
R-38	<u>></u> 0.7	0.24	0.08	-0.01	-0.32	-0.12

Deemed Summer Demand Savings Tables

Savings are presented first for homes with ceiling insulation, and subsequently for those with roof deck insulation. For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling values in Table 226 through Table 230 by a factor of 0.6.

Homes with Ceiling Insulation

Table 226 through Table 230 present the summer demand savings (kW) associated with the installation of a reflective roof in homes with varying levels of ceiling insulation (attic floor) for the five Texas climate zones. Savings are per square foot of treated roof area.

Summer i	Summer Peak Demand Savings for Residential Reflective Roof Installation (kw/sq. ft.)						
Ceiling	Installed roof	Low slope		Stee	ep slope		
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative		
< R-5	0.15 – 0.29	_	-	2.34 x 10-5	1.06 x 10-5		
< R-5	0.3 - 0.49	_	-	1.21 x 10-4	6.05 x 10-5		
< R-5	0.5 - 0.69	2.50 x 10-4	1.18 x 10-4	2.35 x 10-4	1.06 x 10-4		
< R-5	<u>></u> 0.7	3.97 x 10-4	1.94 x 10-4	3.94 x 10-4	1.85 x 10-4		
R-5 to R-8	0.15 – 0.29	_	-	1.48 x 10-5	6.69 x 10-6		

Table 226. Cool Roofs—Climate Zone 1: Amarillo, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Ceiling	Installed roof	Low slope		Stee	ep slope
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative
R-5 to R-8	0.3 - 0.49	_	_	8.09 x 10-5	4.47 x 10-5
R-5 to R-8	0.5 - 0.69	1.78 x 10-4	9.21 x 10-5	1.63 x 10-4	7.51 x 10-5
R-5 to R-8	<u>></u> 0.7	2.85 x 10-4	1.55 x 10-4	2.86 x 10-4	1.40 x 10-4
R-9 to R-14	0.15 – 0.29	_	_	6.05 x 10-6	7.93 x 10-6
R-9 to R-14	0.3 - 0.49	_	_	5.64 x 10-5	2.18 x 10-5
R-9 to R-14	0.5 - 0.69	1.17 x 10-4	5.99 x 10-5	1.08 x 10-4	4.52 x 10-5
R-9 to R-14	<u>></u> 0.7	1.92 x 10-4	9.10 x 10-5	1.90 x 10-4	9.38 x 10-5
R-15 to R-22	0.15 – 0.29	_	_	2.30 x 10-6	-8.73 x 10-7
R-15 to R-22	0.3 - 0.49	_	_	3.55 x 10-5	1.53 x 10-5
R-15 to R-22	0.5 – 0.69	7.90 x 10-5	3.73 x 10-5	7.34 x 10-5	2.74 x 10-5
R-15 to R-22	<u>></u> 0.7	1.31 x 10-4	6.28 x 10-5	1.37 x 10-4	7.50 x 10-5
R-30	0.15 – 0.29	_	_	-8.06 x 10-7	3.42 x 10-6
R-30	0.3 - 0.49	_	_	2.36 x 10-5	1.83 x 10-5
R-30	0.5 – 0.69	5.39 x 10-5	1.76 x 10-5	4.99 x 10-5	2.70 x 10-5
R-30	<u>></u> 0.7	9.25 x 10-5	4.31 x 10-5	9.56 x 10-5	5.99 x 10-5

Table 227. Cool Roofs—Climate Zone 2: Dallas, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Ceiling insulation R-value	Installed roof material 3-year reflectance	Low slope	Steep slope
< R-5	0.15 – 0.29	_	3.46 x 10-5
< R-5	0.3 – 0.49	_	1.79 x 10-4
< R-5	0.5 – 0.69	3.63 x 10-4	3.41 x 10-4
< R-5	<u>≥</u> 0.7	5.36 x 10-4	5.15 x 10-4
R-5 to R-8	0.15 – 0.29	_	2.63 x 10-5
R-5 to R-8	0.3 – 0.49	_	1.36 x 10-4
R-5 to R-8	0.5 – 0.69	2.83 x 10-4	2.64 x 10-4
R-5 to R-8	<u>></u> 0.7	4.10 x 10-4	4.06 x 10-4
R-9 to R-14	0.15 – 0.29	_	1.78 x 10-5
R-9 to R-14	0.3 – 0.49	_	1.02 x 10-4
R-9 to R-14	0.5 – 0.69	1.99 x 10-4	1.73 x 10-4
R-9 to R-14	<u>></u> 0.7	2.85 x 10-4	2.85 x 10-4
R-15 to R-22	0.15 – 0.29	_	9.26 x 10-6
R-15 to R-22	0.3 – 0.49	_	7.69 x 10-5

Ceiling insulation R-value	Installed roof material 3-year reflectance	Low slope	Steep slope
R-15 to R-22	0.5 – 0.69	1.47 x 10-4	1.23 x 10-4
R-15 to R-22	<u>></u> 0.7	2.04 x 10-4	2.15 x 10-4
R-30	0.15 – 0.29	_	1.34 x 10-5
R-30	0.3 – 0.49	_	5.58 x 10-5
R-30	0.5 – 0.69	1.01 x 10-4	8.64 x 10-5
R-30	<u>></u> 0.7	1.52 x 10-4	1.58 x 10-4

Table 228. Cool Roofs—Climate Zone 3: Houston, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Ceiling insulation R-value	Installed roof material 3-year reflectance	Low slope	Steep slope
< R-5	0.15 – 0.29	_	3.27 x 10-5
< R-5	0.3 – 0.49	_	1.74 x 10-4
< R-5	0.5 – 0.69	3.62 x 10-4	3.56 x 10-4
< R-5	<u>></u> 0.7	5.86 x 10-4	5.48 x 10-4
R-5 to R-8	0.15 – 0.29	_	2.38 x 10-5
R-5 to R-8	0.3 – 0.49	_	1.33 x 10-4
R-5 to R-8	0.5 – 0.69	2.76 x 10-4	2.72 x 10-4
R-5 to R-8	<u>></u> 0.7	4.64 x 10-4	4.28 x 10-4
R-9 to R-14	0.15 – 0.29	_	1.55 x 10-5
R-9 to R-14	0.3 – 0.49	_	1.07 x 10-4
R-9 to R-14	0.5 – 0.69	2.12 x 10-4	2.03 x 10-4
R-9 to R-14	<u>></u> 0.7	3.30 x 10-4	3.11 x 10-4
R-15 to R-22	0.15 – 0.29	_	1.75 x 10-5
R-15 to R-22	0.3 – 0.49	_	7.56 x 10-5
R-15 to R-22	0.5 – 0.69	1.53 x 10-4	1.44 x 10-4
R-15 to R-22	<u>></u> 0.7	2.37 x 10-4	2.26 x 10-4
R-30	0.15 – 0.29	_	9.44 x 10-6
R-30	0.3 – 0.49	_	5.11 x 10-5
R-30	0.5 – 0.69	1.09 x 10-4	9.65 x 10-5
R-30	<u>></u> 0.7	1.75 x 10-4	1.64 x 10-4

Table 229. Cool Roofs—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Ceiling insulation R-value	Installed roof material 3-Year reflectance	Low slope	Steep slope
< R-5	0.15 – 0.29	-	1.82 x 10-5
< R-5	0.3 – 0.49	_	9.19 x 10-5
< R-5	0.5 – 0.69	1.67 x 10-4	1.66 x 10-4
< R-5	<u>></u> 0.7	2.75 x 10-4	2.69 x 10-4
R-5 to R-8	0.15 – 0.29	_	1.46 x 10-5
R-5 to R-8	0.3 – 0.49	_	6.97 x 10-5
R-5 to R-8	0.5 – 0.69	1.22 x 10-4	1.23 x 10-4
R-5 to R-8	<u>></u> 0.7	2.02 x 10-4	2.01 x 10-4
R-9 to R-14	0.15 – 0.29	_	6.80 x 10-6
R-9 to R-14	0.3 – 0.49	_	4.15 x 10-5
R-9 to R-14	0.5 – 0.69	7.62 x 10-5	7.37 x 10-5
R-9 to R-14	<u>></u> 0.7	1.26 x 10-4	1.28 x 10-4
R-15 to R-22	0.15 – 0.29	_	4.71 x 10-6
R-15 to R-22	0.3 – 0.49	_	2.55 x 10-5
R-15 to R-22	0.5 – 0.69	4.24 x 10-5	4.39 x 10-5
R-15 to R-22	<u>></u> 0.7	7.33 x 10-5	7.94 x 10-5
R-30	0.15 – 0.29	_	2.50 x 10-6
R-30	0.3 - 0.49	_	1.01 x 10-5
R-30	0.5 – 0.69	2.41 x 10-5	2.04 x 10-5
R-30	<u>></u> 0.7	4.01 x 10-5	4.77 x 10-5

Table 230. Cool Roofs—Climate Zone 5: El Paso,

Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Ceiling	Installed roof	Low s	Low slope		slope
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative
< R-5	0.15 – 0.29	_	-	3.58 x 10-5	1.28 x 10-5
< R-5	0.3 – 0.49	_	_	1.72 x 10-4	7.49 x 10-5
< R-5	0.5 – 0.69	3.95 x 10-4	1.54 x 10-4	3.44 x 10-4	1.65 x 10-4
< R-5	<u>></u> 0.7	6.15 x 10-4	2.42 x 10-4	5.19 x 10-4	2.20 x 10-4
R-5 to R-8	0.15 – 0.29	_	-	2.72 x 10-5	8.96 x 10-6
R-5 to R-8	0.3 – 0.49	_	_	1.27 x 10-4	6.00 x 10-5
R-5 to R-8	0.5 – 0.69	3.06 x 10-4	1.34 x 10-4	2.59 x 10-4	1.38 x 10-4

Ceiling	Installed roof	Low s	lope	Steep slope	
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative
R-5 to R-8	<u>></u> 0.7	4.77 x 10-4	2.05 x 10-4	3.97 x 10-4	1.78 x 10-4
R-9 to R-14	0.15 – 0.29	_	_	1.25 x 10-5	9.26 x 10-6
R-9 to R-14	0.3 – 0.49	_	_	8.24 x 10-5	5.30 x 10-5
R-9 to R-14	0.5 – 0.69	2.07 x 10-4	1.00 x 10-4	1.73 x 10-4	8.86 x 10-5
R-9 to R-14	<u>></u> 0.7	3.27 x 10-4	1.44 x 10-4	2.60 x 10-4	1.22 x 10-4
R-15 to R-22	0.15 – 0.29	_	_	6.16 x 10-6	3.73 x 10-6
R-15 to R-22	0.3 – 0.49	_	_	6.18 x 10-5	4.40 x 10-5
R-15 to R-22	0.5 – 0.69	1.50 x 10-4	7.63 x 10-5	1.24 x 10-4	6.49 x 10-5
R-15 to R-22	<u>></u> 0.7	2.42 x 10-4	1.11 x 10-4	1.88 x 10-4	8.86 x 10-5
R-30	0.15 – 0.29	_	_	6.64 x 10-6	5.65 x 10-7
R-30	0.3 – 0.49	_	_	4.77 x 10-5	2.87 x 10-5
R-30	0.5 – 0.69	1.01 x 10-4	5.91 x 10-5	8.81 x 10-5	5.07 x 10-5
R-30	<u>></u> 0.7	1.80 x 10-4	8.50 x 10-5	1.32 x 10-4	6.75 x 10-5

Homes with Roof Deck Insulation

Table 231 through Table 235 present the summer demand savings (kW) associated with the installation of a reflective roof in homes with varying levels of roof deck for the five Texas climate zones. Savings are per square foot of treated roof area.

Table 231. Cool Roofs—Climate Zone 1: Amarillo, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof deck	Installed roof	Low s	lope	Steep	slope
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative
R-19	0.15 – 0.29	_	_	_	_
R-19	0.3 - 0.49	_	_	2.67 x 10-5	7.62 x 10-6
R-19	0.5 – 0.69	5.56 x 10-5	1.84 x 10-5	5.35 x 10-5	1.55 x 10-5
R-19	<u>></u> 0.7	9.88 x 10-5	7.61 x 10-6	8.81 x 10-5	1.52 x 10-5
R-30	0.15 – 0.29	_	_	3.37 x 10-6	3.42 x 10-6
R-30	0.3 – 0.49	_	_	1.97 x 10-5	7.38 x 10-6
R-30	0.5 – 0.69	3.21 x 10-5	9.13 x 10-6	3.06 x 10-5	1.25 x 10-5
R-30	<u>></u> 0.7	6.91 x 10-5	8.48 x 10-6	5.94 x 10-5	1.60 x 10-5
R-38	0.15 – 0.29	_	_	5.82 x 10-6	5.90 x 10-6

Roof deck Installed roof		Low s	lope	Steep slope		
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative	
R-38	0.3 - 0.49	_	_	1.46 x 10-5	7.20 x 10-6	
R-38	0.5 – 0.69	1.50 x 10-5	2.38 x 10-6	1.40 x 10-5	1.04 x 10-5	
R-38	<u>></u> 0.7	4.75 x 10-5	9.12 x 10-6	3.85 x 10-5	1.66 x 10-5	

Table 232. Cool Roofs—Climate Zone 2: Dallas,

Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof deck insulation	Installed roof material	Low slope	Steep slope
R-value	3-year reflectance	Refrigerated	Refrigerated
R-19	0.15 – 0.29	-	5.45 x 10-5
R-19	0.3 – 0.49	-	9.02 x 10-5
R-19	0.5 – 0.69	7.41 x 10-5	1.21 x 10-4
R-19	<u>></u> 0.7	1.16 x 10-4	5.18 x 10-6
R-30	0.15 – 0.29	-	2.22 x 10-5
R-30	0.3 – 0.49	_	5.01 x 10-5
R-30	0.5 – 0.69	4.37 x 10-5	7.67 x 10-5
R-30	<u>></u> 0.7	7.41 x 10-5	3.37 x 10-5
R-38	0.15 – 0.29	_	-1.31 x 10-6
R-38	0.3 – 0.49	-	2.10 x 10-5
R-38	0.5 – 0.69	2.16 x 10-5	4.44 x 10-5
R-38	<u>></u> 0.7	4.36 x 10-5	5.45 x 10-5

Table 233. Cool Roofs—Climate Zone 3: Houston, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof deck insulation	Dof deck insulation Installed roof material Low slope		Steep slope
R-value	3-year reflectance	Refrigerated	Refrigerated
R-19	0.15 – 0.29	_	-
R-19	0.3 – 0.49	_	_
R-19	0.5 – 0.69	9.43 x 10-5	9.42 x 10-5
R-19	<u>></u> 0.7	1.32 x 10-4	1.21 x 10-4
R-30	0.15 – 0.29	_	-1.46 x 10-6
R-30	0.3 – 0.49	_	2.60 x 10-5
R-30	0.5 – 0.69	7.13 x 10-5	6.50 x 10-5

Roof deck insulation	Installed roof material	Low slope	Steep slope	
R-value	3-year reflectance	Refrigerated	Refrigerated	
R-30	<u>≥</u> 0.7	8.56 x 10-5	8.46 x 10-5	
R-38	0.15 – 0.29	-	-2.53 x 10-6	
R-38	0.3 – 0.49	_	1.37 x 10-5	
R-38	0.5 – 0.69	5.46 x 10-5	4.37 x 10-5	
R-38	<u>></u> 0.7	5.19 x 10-5	5.82 x 10-5	

Table 234. Cool Roofs—Climate Zone 4: Corpus Christi, Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof deck insulation	Installed roof material	Low slope	Steep slope
R-value	3-year reflectance	Refrigerated	Refrigerated
R-19	0.15 – 0.29	_	_
R-19	0.3 – 0.49	_	3.38 x 10-5
R-19	0.5 – 0.69	4.44 x 10-5	5.01 x 10-5
R-19	<u>></u> 0.7	7.43 x 10-5	7.37 x 10-5
R-30	0.15 – 0.29	_	3.36 x 10-6
R-30	0.3 – 0.49	_	2.68 x 10-5
R-30	0.5 – 0.69	2.09 x 10-5	3.56 x 10-5
R-30	<u>></u> 0.7	5.33 x 10-5	5.29 x 10-5
R-38	0.15 – 0.29	_	5.81 x 10-6
R-38	0.3 – 0.49	_	2.17 x 10-5
R-38	0.5 – 0.69	3.83 x 10-6	2.51 x 10-5
R-38	<u>></u> 0.7	3.80 x 10-5	3.78 x 10-5

Table 235. Cool Roofs—Climate Zone 5: El Paso,

Summer Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof deck	Installed roof	Low slope		Steep slope	
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative
R-19	0.15 – 0.29	_	_	_	_
R-19	0.3 – 0.49	_	_	3.64 x 10-5	2.24 x 10-5
R-19	0.5 – 0.69	8.11 x 10-5	2.76 x 10-5	8.95 x 10-5	4.42 x 10-5
R-19	<u>></u> 0.7	1.33 x 10-4	2.30 x 10-5	1.35 x 10-4	4.44 x 10-5
R-30	0.15 – 0.29	_	_	6.66 x 10-6	1.11 x 10-6
R-30	0.3 - 0.49	_	_	3.01 x 10-5	5.29 x 10-6
R-30	0.5 – 0.69	5.61 x 10-5	1.09 x 10-5	6.63 x 10-5	1.83 x 10-5

Roof deck Installed roof		Lov	w slope	Steep slope		
insulation R-value	material 3-year reflectance	Refrigerated	Evaporative	Refrigerated	Evaporative	
R-30	<u>></u> 0.7	1.13 x 10-4	1.29 x 10-5	1.05 x 10-4	2.23 x 10-5	
R-38	0.15 – 0.29	_	_	1.15 x 10-5	1.91 x 10-6	
R-38	0.3 – 0.49	_	_	2.55 x 10-5	-7.15 x 10-6	
R-38	0.5 – 0.69	3.79 x 10-5	-1.22 x 10-6	4.95 x 10-5	-5.19 x 10-7	
R-38	<u>></u> 0.7	9.92 x 10-5	5.60 x 10-6	8.40 x 10-5	6.29 x 10-6	

Deemed Winter Demand Savings Tables

Savings are presented first for homes with ceiling insulation, and subsequently for those with roof deck insulation. For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 236 through Table 240 by a factor of 0.24.²⁵⁷

Homes with Ceiling Insulation

Table 236 through Table 240 present the winter demand savings (kW) associated with the installation of a reflective roof in homes with varying levels of ceiling insulation (attic floor) for the five Texas climate zones. Savings are per square foot of treated roof area.

Installed			Low slope			Steep slope		
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
< R-5	0.15 – 0.29	_	_	_	-5.60 x 10-7	-1.18 x 10-5	-5.68 x 10-6	
< R-5	0.3 – 0.49	_	_	_	-3.08 x 10-6	-5.83 x 10-5	-2.67 x 10-5	
< R-5	0.5 – 0.69	-3.03 x 10-6	-1.14 x 10-4	-5.47 x 10-5	-6.38 x 10-6	-1.06 x 10-4	-4.91 x 10-5	
< R-5	<u>></u> 0.7	-1.46 x 10-5	-1.66 x 10-4	-8.19 x 10-5	-2.21 x 10-5	-1.54 x 10-4	-7.28 x 10-5	
R-5 to R-8	0.15 – 0.29	_	-	_	-1.01 x 10-6	-9.53 x 10-6	-4.74 x 10-6	
R-5 to R-8	0.3 – 0.49	_	_	_	-4.25 x 10-6	-4.66 x 10-5	-2.12 x 10-5	
R-5 to R-8	0.5 – 0.69	1.52 x 10-6	-9.25 x 10-5	-4.52 x 10-5	-5.04 x 10-6	-8.62 x 10-5	-4.15 x 10-5	
R-5 to R-8	<u>></u> 0.7	-9.01 x 10-6	-1.34 x 10-4	-6.68 x 10-5	-2.13 x 10-5	-1.24 x 10-4	-5.82 x 10-5	
R-9 to R-14	0.15 – 0.29	_	_	_	-8.59 x 10-7	-7.63 x 10-6	-3.69 x 10-6	

Table 236. Cool Roofs—Climate Zone 1: Amarillo, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

²⁵⁷ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

• • • •	Installed		Low slope		Steep slope			
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
R-9 to R-14	0.3 – 0.49	_	_	_	-3.68 x 10-6	-3.63 x 10-5	-1.55 x 10-5	
R-9 to R-14	0.5 - 0.69	-1.04 x 10-7	-7.28 x 10-5	-3.43 x 10-5	-1.49 x 10-5	-6.73 x 10-5	-3.07 x 10-5	
R-9 to R-14	<u>≥</u> 0.7	-6.86 x 10-6	-1.05 x 10-4	-4.98 x 10-5	-2.11 x 10-5	-9.83 x 10-5	-4.57 x 10-5	
R-15 to R-22	0.15 – 0.29	_	_	_	-8.96 x 10-7	-5.40 x 10-6	-2.51 x 10-6	
R-15 to R-22	0.3 – 0.49	_	_	_	-3.85 x 10-6	-2.60 x 10-5	-1.08 x 10-5	
R-15 to R-22	0.5 - 0.69	-1.72 x 10-6	-5.26 x 10-5	-2.47 x 10-5	-1.19 x 10-5	-4.80 x 10-5	-2.15 x 10-5	
R-15 to R-22	<u>></u> 0.7	-9.72 x 10-7	-7.65 x 10-5	-3.64 x 10-5	-1.44 x 10-5	-7.05 x 10-5	-3.23 x 10-5	
R-30	0.15 – 0.29	-	-	-	-8.09 x 10-7	-3.58 x 10-6	-1.64 x 10-6	
R-30	0.3 – 0.49	-	-	-	-1.08 x 10-5	-1.73 x 10-5	-7.31 x 10-6	
R-30	0.5 – 0.69	-5.10 x 10-6	-3.52 x 10-5	-1.58 x 10-5	-1.54 x 10-5	-3.12 x 10-5	-1.36 x 10-5	
R-30	<u>></u> 0.7	-3.71 x 10-6	-5.35 x 10-5	-2.58 x 10-5	-2.10 x 10-5	-4.64 x 10-5	-2.11 x 10-5	

Table 237. Cool Roofs—Climate Zone 2: Dallas, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

	Installed		Low slope		Steep slope			
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
< R-5	0.15 – 0.29	_	_	_	2.40 x 10-6	-1.29 x 10-5	-6.63 x 10-6	
< R-5	0.3 – 0.49	_	_	_	-2.62 x 10-8	-6.19 x 10-5	-3.24 x 10-5	
< R-5	0.5 – 0.69	-2.83 x 10-6	-1.48 x 10-4	-7.24 x 10-5	-1.44 x 10-6	-1.19 x 10-4	-6.06 x 10-5	
< R-5	<u>></u> 0.7	-6.02 x 10-6	-2.17 x 10-4	-1.07 x 10-4	-4.75 x 10-6	-1.81 x 10-4	-9.06 x 10-5	
R-5 to R-8	0.15 – 0.29	_	_	_	4.57 x 10-6	-1.03 x 10-5	-5.30 x 10-6	
R-5 to R-8	0.3 – 0.49	_	_	_	1.59 x 10-6	-4.70 x 10-5	-2.68 x 10-5	
R-5 to R-8	0.5 – 0.69	-3.36 x 10-6	-1.19 x 10-4	-5.69 x 10-5	1.19 x 10-6	-9.33 x 10-5	-4.88 x 10-5	
R-5 to R-8	<u>></u> 0.7	-3.79 x 10-6	-1.74 x 10-4	-8.66 x 10-5	-4.46 x 10-6	-1.43 x 10-4	-7.18 x 10-5	
R-9 to R-14	0.15 – 0.29	_	_	_	-7.26 x 10-7	-8.09 x 10-6	-3.86 x 10-6	
R-9 to R-14	0.3 – 0.49	_	_	_	-2.92 x 10-6	-4.23 x 10-5	-2.03 x 10-5	
R-9 to R-14	0.5 – 0.69	-1.29 x 10-5	-9.30 x 10-5	-4.31 x 10-5	-3.26 x 10-6	-7.90 x 10-5	-3.76 x 10-5	
R-9 to R-14	<u>></u> 0.7	-1.27 x 10-5	-1.41 x 10-4	-6.53 x 10-5	-7.53 x 10-6	-1.19 x 10-4	-5.52 x 10-5	
R-15 to R-22	0.15 – 0.29	_	_	_	3.23 x 10-7	-5.84 x 10-6	-2.76 x 10-6	
R-15 to R-22	0.3 – 0.49	_	_	_	-1.95 x 10-6	-3.04 x 10-5	-1.43 x 10-5	
R-15 to R-22	0.5 – 0.69	-1.48 x 10-5	-6.81 x 10-5	-3.23 x 10-5	-2.74 x 10-6	-5.69 x 10-5	-2.66 x 10-5	
R-15 to R-22	<u>></u> 0.7	-1.61 x 10-5	-1.02 x 10-4	-4.67 x 10-5	-3.88 x 10-7	-8.65 x 10-5	-4.05 x 10-5	

	Installed	Low slope			Steep slope		
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-30	0.15 – 0.29	-	-	_	-3.74 x 10-7	2.81 x 10-6	8.71 x 10-6
R-30	0.3 – 0.49	-	-	_	-1.78 x 10-6	-1.39 x 10-5	9.39 x 10-7
R-30	0.5 – 0.69	-3.37 x 10-6	-4.77 x 10-5	-2.23 x 10-5	-2.20 x 10-6	-3.16 x 10-5	-7.00 x 10-6
R-30	<u>></u> 0.7	-1.67 x 10-5	-7.04 x 10-5	-3.03 x 10-5	-4.41 x 10-6	-5.14 x 10-5	-1.57 x 10-5

Table 238. Cool Roofs—Climate Zone 3: Houston, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

	Installed		Low slope		Steep slope			
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
< R-5	0.15 - 0.29	_	_	_	-7.91 x 10-7	-1.54 x 10-5	-7.77 x 10-6	
< R-5	0.3 – 0.49	_	-	-	-3.12 x 10-6	-7.71 x 10-5	-3.90 x 10-5	
< R-5	0.5 – 0.69	-3.28 x 10-6	-1.56 x 10-4	-7.95 x 10-5	-6.08 x 10-6	-1.40 x 10-4	-7.09 x 10-5	
< R-5	<u>></u> 0.7	-4.78 x 10-6	-2.23 x 10-4	-1.11 x 10-4	-7.97 x 10-6	-2.04 x 10-4	-1.05 x 10-4	
R-5 to R-8	0.15 - 0.29	_	-	-	-7.39 x 10-7	-1.25 x 10-5	-6.46 x 10-6	
R-5 to R-8	0.3 – 0.49	_	-	-	-2.67 x 10-6	-6.28 x 10-5	-3.05 x 10-5	
R-5 to R-8	0.5 – 0.69	-4.26 x 10-6	-1.28 x 10-4	-6.54 x 10-5	-5.79 x 10-6	-1.14 x 10-4	-5.59 x 10-5	
R-5 to R-8	<u>></u> 0.7	-4.68 x 10-6	-1.84 x 10-4	-9.11 x 10-5	-9.38 x 10-6	-1.68 x 10-4	-8.50 x 10-5	
R-9 to R-14	0.15 - 0.29	_	_	_	-6.93 x 10-7	-9.35 x 10-6	-4.68 x 10-6	
R-9 to R-14	0.3 – 0.49	_	-	-	-3.38 x 10-6	-4.69 x 10-5	-2.31 x 10-5	
R-9 to R-14	0.5 – 0.69	-5.14 x 10-6	-9.71 x 10-5	-4.78 x 10-5	-6.46 x 10-6	-8.68 x 10-5	-4.28 x 10-5	
R-9 to R-14	<u>></u> 0.7	-4.83 x 10-6	-1.41 x 10-4	-6.90 x 10-5	-1.00 x 10-5	-1.27 x 10-4	-6.19 x 10-5	
R-15 to R-22	0.15 - 0.29	-	-	-	-7.06 x 10-7	-6.48 x 10-6	-3.22 x 10-6	
R-15 to R-22	0.3 – 0.49	_	-	-	-3.70 x 10-6	-3.32 x 10-5	-1.62 x 10-5	
R-15 to R-22	0.5 – 0.69	-5.52 x 10-6	-6.85 x 10-5	-3.34 x 10-5	-6.80 x 10-6	-6.15 x 10-5	-3.00 x 10-5	
R-15 to R-22	<u>></u> 0.7	-8.06 x 10-6	-1.00 x 10-4	-4.89 x 10-5	-9.55 x 10-6	-9.10 x 10-5	-4.44 x 10-5	
R-30	0.15 - 0.29	_	-	-	-6.32 x 10-7	-4.54 x 10-6	-2.25 x 10-6	
R-30	0.3 – 0.49	_	-	-	-3.32 x 10-6	-2.23 x 10-5	-1.07 x 10-5	
R-30	0.5 – 0.69	-5.55 x 10-6	-4.83 x 10-5	-2.35 x 10-5	-6.05 x 10-6	-4.13 x 10-5	-2.00 x 10-5	
R-30	<u>></u> 0.7	-6.77 x 10-6	-7.30 x 10-5	-3.95 x 10-5	-8.39 x 10-6	-6.06 x 10-5	-2.93 x 10-5	

Table 239. Cool Roofs—Climate Zone 4: Corpus Christi,		
Winter Peak Demand Savings for Residential Reflective Roof Installation (kW	/sq	ft.)

	Installed		Low slope		Steep slope			
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
< R-5	0.15 - 0.29	_	_	_	-4.72 x 10-7	-1.47 x 10-5	-6.94 x 10-6	
< R-5	0.3 – 0.49	-	_	_	-2.45 x 10-6	-7.36 x 10-5	-3.49 x 10-5	
< R-5	0.5 – 0.69	-5.41 x 10-6	-1.51 x 10-4	-7.33 x 10-5	-4.77 x 10-6	-1.34 x 10-4	-6.20 x 10-5	
< R-5	<u>></u> 0.7	-7.53 x 10-6	-2.19 x 10-4	-1.02 x 10-4	-7.11 x 10-6	-1.99 x 10-4	-9.32 x 10-5	
R-5 to R-8	0.15 - 0.29	-	_	_	-4.02 x 10-7	-1.19 x 10-5	-5.71 x 10-6	
R-5 to R-8	0.3 – 0.49	_	_	_	-2.13 x 10-6	-5.99 x 10-5	-2.89 x 10-5	
R-5 to R-8	0.5 – 0.69	-3.72 x 10-6	-1.20 x 10-4	-5.60 x 10-5	-3.17 x 10-6	-1.08 x 10-4	-5.08 x 10-5	
R-5 to R-8	<u>></u> 0.7	-7.11 x 10-6	-1.79 x 10-4	-8.65 x 10-5	-4.84 x 10-6	-1.61 x 10-4	-7.59 x 10-5	
R-9 to R-14	0.15 - 0.29	-	_	_	-6.35 x 10-7	-8.94 x 10-6	-4.36 x 10-6	
R-9 to R-14	0.3 – 0.49	-	_	_	-1.95 x 10-6	-4.53 x 10-5	-2.21 x 10-5	
R-9 to R-14	0.5 – 0.69	-3.55 x 10-6	-9.21 x 10-5	-4.40 x 10-5	-2.94 x 10-6	-8.27 x 10-5	-3.89 x 10-5	
R-9 to R-14	<u>></u> 0.7	-4.77 x 10-6	-1.35 x 10-4	-6.41 x 10-5	-3.95 x 10-6	-1.23 x 10-4	-5.95 x 10-5	
R-15 to R-22	0.15 - 0.29	-	_	_	-1.73 x 10-6	-6.16 x 10-6	-2.94 x 10-6	
R-15 to R-22	0.3 – 0.49	-	_	_	-2.67 x 10-6	-3.25 x 10-5	-1.62 x 10-5	
R-15 to R-22	0.5 - 0.69	-3.83 x 10-6	-6.74 x 10-5	-3.45 x 10-5	-3.08 x 10-6	-5.91 x 10-5	-2.83 x 10-5	
R-15 to R-22	<u>></u> 0.7	-4.47 x 10-6	-9.81 x 10-5	-4.84 x 10-5	-4.19 x 10-6	-8.82 x 10-5	-4.34 x 10-5	
R-30	0.15 - 0.29	_	_	_	-1.34 x 10-7	-4.03 x 10-6	-1.87 x 10-6	
R-30	0.3 – 0.49	_	_		-9.58 x 10-7	-2.14 x 10-5	-1.03 x 10-5	
R-30	0.5 – 0.69	-3.13 x 10-6	-4.69 x 10-5	-2.41 x 10-5	-2.42 x 10-6	-4.01 x 10-5	-2.00 x 10-5	
R-30	<u>></u> 0.7	-3.46 x 10-6	-6.78 x 10-5	-3.32 x 10-5	-2.98 x 10-6	-5.89 x 10-5	-2.88 x 10-5	

Table 240. Cool Roofs—Climate Zone 5: El Paso, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

	Installed	Low slope			Steep slope			
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
< R-5	0.15 - 0.29	_	_	_	-6.68 x 10-7	-2.51 x 10-5	-1.01 x 10-5	
< R-5	0.3 – 0.49	_	_	_	-7.29 x 10-6	-1.33 x 10-4	-5.50 x 10-5	
< R-5	0.5 – 0.69	-1.53 x 10-5	-2.93 x 10-4	-1.17 x 10-4	-1.34 x 10-5	-2.50 x 10-4	-1.02 x 10-4	
< R-5	<u>></u> 0.7	-1.73 x 10-5	-4.44 x 10-4	-1.79 x 10-4	-1.93 x 10-5	-3.82 x 10-4	-1.57 x 10-4	
R-5 to R-8	0.15 - 0.29	_	_	_	-2.41 x 10-7	-1.98 x 10-5	-7.98 x 10-6	

	Installed		Low slope		Steep slope			
Ceiling insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
R-5 to R-8	0.3 – 0.49	_	_	_	-4.83 x 10-6	-1.03 x 10-4	-4.14 x 10-5	
R-5 to R-8	0.5 - 0.69	-1.33 x 10-5	-2.36 x 10-4	-9.44 x 10-5	-1.22 x 10-5	-1.99 x 10-4	-7.97 x 10-5	
R-5 to R-8	<u>></u> 0.7	-1.47 x 10-5	-3.64 x 10-4	-1.48 x 10-4	-1.73 x 10-5	-3.11 x 10-4	-1.28 x 10-4	
R-9 to R-14	0.15 - 0.29	_	_	_	-5.77 x 10-7	-1.35 x 10-5	-5.48 x 10-6	
R-9 to R-14	0.3 – 0.49	_	_	_	-4.07 x 10-6	-7.56 x 10-5	-3.15 x 10-5	
R-9 to R-14	0.5 – 0.69	-9.52 x 10-6	-1.70 x 10-4	-6.83 x 10-5	-9.66 x 10-6	-1.44 x 10-4	-5.76 x 10-5	
R-9 to R-14	<u>></u> 0.7	-1.06 x 10-5	-2.73 x 10-4	-1.12 x 10-4	-1.38 x 10-5	-2.33 x 10-4	-9.66 x 10-5	
R-15 to R-22	0.15 - 0.29	_	_	_	-4.29 x 10-7	-9.41 x 10-6	-4.20 x 10-6	
R-15 to R-22	0.3 – 0.49	_	_	_	-3.14 x 10-6	-4.91 x 10-5	-2.00 x 10-5	
R-15 to R-22	0.5 – 0.69	-7.55 x 10-6	-1.14 x 10-4	-4.66 x 10-5	-7.70 x 10-6	-9.71 x 10-5	-4.02 x 10-5	
R-15 to R-22	<u>></u> 0.7	-8.94 x 10-6	-1.85 x 10-4	-7.43 x 10-5	-1.05 x 10-5	-1.55 x 10-4	-6.29 x 10-5	
R-30	0.15 - 0.29	_	_	_	-2.85 x 10-7	-6.26 x 10-6	-2.54 x 10-6	
R-30	0.3 – 0.49	_	_	_	-2.32 x 10-6	-3.11 x 10-5	-1.25 x 10-5	
R-30	0.5 – 0.69	-5.52 x 10-6	-7.44 x 10-5	-2.95 x 10-5	-6.01 x 10-6	-5.97 x 10-5	-2.46 x 10-5	
R-30	<u>></u> 0.7	-7.73 x 10-6	-1.20 x 10-4	-4.89 x 10-5	-7.78 x 10-6	-9.69 x 10-5	-3.98 x 10-5	

Homes with Roof Deck Insulation

Table 241 through Table 245 present the winter demand savings (kW) associated with the installation of a reflective roof in homes with varying levels of roof deck for the five Texas climate zones. Savings are per square foot of treated roof area.

Table 241. Cool Roofs—Climate Zone 1: Amarillo, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

RoofInstalleddeckroof materialinsulation3-yearR-valuereflectance	Installed		Low slope		Steep slope			
	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump	
R-19	0.15 - 0.29	_	-	-	_	-	-	
R-19	0.3 - 0.49	_	_	-	6.62 x 10-7	-3.75 x 10-5	-1.86 x 10-5	
R-19	0.5 – 0.69	1.68 x 10-6	-6.28 x 10-5	-2.35 x 10-5	5.59 x 10-6	-7.49 x 10-5	-3.71 x 10-5	
R-19	<u>></u> 0.7	-1.78 x 10-6	-9.77 x 10-5	-4.08 x 10-5	7.13 x 10-6	-1.12 x 10-4	-5.19 x 10-5	
R-30	0.15 - 0.29	_	_	_	-1.08 x 10-7	-3.00 x 10-6	-1.52 x 10-6	
R-30	0.3 – 0.49	_	_	_	2.49 x 10-6	-3.23 x 10-5	-1.75 x 10-5	
R-30	0.5 – 0.69	-5.08 x 10-7	-5.14 x 10-5	-2.26 x 10-5	3.99 x 10-6	-6.01 x 10-5	-3.15 x 10-5	

Roof	Roof deckInstalled roof material a-yearinsulation R-value3-year reflectance	Low slope			Steep slope		
deck insulation R-value		Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-30	<u>></u> 0.7	-1.76 x 10-6	-7.76 x 10-5	-3.59 x 10-5	4.24 x 10-6	-8.76 x 10-5	-4.38 x 10-5
R-38	0.15 - 0.29	_	_	_	-1.87 x 10-7	-5.19 x 10-6	-2.62 x 10-6
R-38	0.3 – 0.49	_	_	_	3.82 x 10-6	-2.85 x 10-5	-1.67 x 10-5
R-38	0.5 – 0.69	-2.10 x 10-6	-4.31 x 10-5	-2.20 x 10-5	2.82 x 10-6	-4.93 x 10-5	-2.74 x 10-5
R-38	<u>></u> 0.7	-1.74 x 10-6	-6.29 x 10-5	-3.23 x 10-5	2.13 x 10-6	-6.99 x 10-5	-3.79 x 10-5

Table 242. Cool Roofs—Climate Zone 2: Dallas, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof Installed			Low slope		Steep slope		
insulation 3-year R-value reflectance	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-19	0.15 - 0.29	_	_	_	-	-	_
R-19	0.3 – 0.49	_	_	_	-1.68 x 10-6	-4.21 x 10-5	-2.13 x 10-5
R-19	0.5 – 0.69	3.73 x 10-6	-8.26 x 10-5	-3.29 x 10-5	3.93 x 10-6	-8.72 x 10-5	-4.49 x 10-5
R-19	<u>></u> 0.7	2.09 x 10-6	-1.33 x 10-4	-5.96 x 10-5	2.27 x 10-6	-1.30 x 10-4	-5.31 x 10-5
R-30	0.15 - 0.29	_	_	_	-7.35 x 10-8	-3.36 x 10-6	-1.70 x 10-6
R-30	0.3 – 0.49	_	_	_	-1.19 x 10-6	-3.52 x 10-5	-1.73 x 10-5
R-30	0.5 – 0.69	6.09 x 10-7	-6.66 x 10-5	-3.33 x 10-5	8.00 x 10-8	-6.99 x 10-5	-3.56 x 10-5
R-30	<u>></u> 0.7	-1.22 x 10-6	-1.03 x 10-4	-5.11 x 10-5	-1.19 x 10-6	-1.03 x 10-4	-4.63 x 10-5
R-38	0.15 - 0.29	_	_	_	-1.27 x 10-7	-5.81 x 10-6	-2.93 x 10-6
R-38	0.3 – 0.49	_	_	_	-8.41 x 10-7	-3.02 x 10-5	-1.44 x 10-5
R-38	0.5 – 0.69	-1.66 x 10-6	-5.49 x 10-5	-3.36 x 10-5	-2.72 x 10-6	-5.73 x 10-5	-2.88 x 10-5
R-38	<u>></u> 0.7	-3.63 x 10-6	-8.17 x 10-5	-4.49 x 10-5	-3.70 x 10-6	-8.42 x 10-5	-4.14 x 10-5

Table 243. Cool Roofs—Climate Zone 3: Houston, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof	Installed	Low slope			Steep slope		
deck insulation R-value	roof material 3-year reflectance	Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-19	0.15 - 0.29	-	-	_	_	_	-
R-19	0.3 – 0.49	-	-	_	5.21 x 10-8	-4.60 x 10-5	-2.10 x 10-5
R-19	0.5 - 0.69	-4.82 x 10-7	-9.84 x 10-5	-5.19 x 10-5	-1.73 x 10-7	-9.69 x 10-5	-4.88 x 10-5
R-19	<u>></u> 0.7	1.47 x 10-6	-1.47 x 10-4	-7.52 x 10-5	2.13 x 10-6	-1.52 x 10-4	-8.03 x 10-5
R-30	0.15 - 0.29	_	_	_	2.41 x 10-8	-3.94 x 10-6	-2.10 x 10-6

Roof deck insulation R-value	Installed roof material 3-year reflectance	Low slope			Steep slope		
		Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-30	0.3 – 0.49	_	_	_	1.86 x 10-7	-4.00 x 10-5	-1.93 x 10-5
R-30	0.5 - 0.69	-1.49 x 10-6	-8.32 x 10-5	-4.30 x 10-5	-4.20 x 10-7	-7.79 x 10-5	-4.01 x 10-5
R-30	<u>≥</u> 0.7	-1.30 x 10-6	-1.17 x 10-4	-6.28 x 10-5	-7.36 x 10-7	-1.19 x 10-4	-6.33 x 10-5
R-38	0.15 - 0.29	_	_	_	4.96 x 10-8	-6.80 x 10-6	-3.63 x 10-6
R-38	0.3 – 0.49	_	_	_	4.75 x 10-7	-3.56 x 10-5	-1.81 x 10-5
R-38	0.5 – 0.69	-2.23 x 10-6	-7.22 x 10-5	-3.66 x 10-5	-5.99 x 10-7	-6.41 x 10-5	-3.37 x 10-5
R-38	<u>></u> 0.7	-3.32 x 10-6	-9.52 x 10-5	-5.37 x 10-5	-2.82 x 10-6	-9.58 x 10-5	-5.09 x 10-5

Table 244. Cool Roofs—Climate Zone 4: Corpus Christi, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof	Installed roof material 3-year reflectance	Low slope			Steep slope		
deck insulation R-value		Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-19	0.15 - 0.29	_	_	_	_	_	-
R-19	0.3 – 0.49	_	_	_	-1.53 x 10-6	-4.45 x 10-5	-2.26 x 10-5
R-19	0.5 – 0.69	-2.27 x 10-6	-9.14 x 10-5	-3.90 x 10-5	-2.29 x 10-6	-9.18 x 10-5	-4.65 x 10-5
R-19	<u>></u> 0.7	-2.65 x 10-6	-1.39 x 10-4	-6.06 x 10-5	-4.16 x 10-6	-1.37 x 10-4	-6.18 x 10-5
R-30	0.15 - 0.29	_	_	_	-1.08 x 10-7	-3.76 x 10-6	-1.77 x 10-6
R-30	0.3 – 0.49	_	_	_	-1.19 x 10-6	-3.68 x 10-5	-1.74 x 10-5
R-30	0.5 - 0.69	-2.72 x 10-6	-7.35 x 10-5	-3.29 x 10-5	-2.34 x 10-6	-7.31 x 10-5	-3.62 x 10-5
R-30	<u>></u> 0.7	-3.34 x 10-6	-1.09 x 10-4	-4.88 x 10-5	-3.60 x 10-6	-1.09 x 10-4	-5.07 x 10-5
R-38	0.15 - 0.29	_	_	_	-1.87 x 10-7	-6.50 x 10-6	-3.06 x 10-6
R-38	0.3 – 0.49	_	_	_	-9.37 x 10-7	-3.12 x 10-5	-1.36 x 10-5
R-38	0.5 – 0.69	-3.05 x 10-6	-6.05 x 10-5	-2.85 x 10-5	-2.37 x 10-6	-5.95 x 10-5	-2.87 x 10-5
R-38	<u>></u> 0.7	-3.85 x 10-6	-8.74 x 10-5	-4.03 x 10-5	-3.19 x 10-6	-8.78 x 10-5	-4.27 x 10-5

Table 245. Cool Roofs—Climate Zone 5: El Paso, Winter Peak Demand Savings for Residential Reflective Roof Installation (kW/sq. ft.)

Roof deck insulation R-value	Installed roof material 3-year reflectance	Low slope			Steep slope		
		Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-19	0.15 - 0.29	_	_	_	_	_	_
R-19	0.3 – 0.49	_	_	_	2.07 x 10-6	-5.87 x 10-5	-2.38 x 10-5
R-19	0.5 – 0.69	7.97 x 10-7	-1.30 x 10-4	-5.39 x 10-5	1.10 x 10-6	-1.31 x 10-4	-5.30 x 10-5

Roof deck insulation R-value	Installed roof material 3-year reflectance	Low slope			Steep slope		
		Gas	Electric resistance	Heat pump	Gas	Electric resistance	Heat pump
R-19	<u>></u> 0.7	-1.19 x 10-6	-2.13 x 10-4	-8.83 x 10-5	-8.95 x 10-7	-2.10 x 10-4	-8.53 x 10-5
R-30	0.15 - 0.29	_	_	_	-1.04 x 10-7	-4.45 x 10-6	-1.81 x 10-6
R-30	0.3 – 0.49	_	_	_	4.81 x 10-7	-4.81 x 10-5	-1.95 x 10-5
R-30	0.5 – 0.69	3.74 x 10-8	-1.01 x 10-4	-4.16 x 10-5	-7.12 x 10-7	-1.01 x 10-4	-4.15 x 10-5
R-30	<u>></u> 0.7	-1.64 x 10-6	-1.61 x 10-4	-6.73 x 10-5	-2.51 x 10-6	-1.60 x 10-4	-6.58 x 10-5
R-38	0.15 - 0.29	_	_	_	-1.79 x 10-7	-7.68 x 10-6	-3.13 x 10-6
R-38	0.3 – 0.49	_	_	_	-6.75 x 10-7	-4.04 x 10-5	-1.63 x 10-5
R-38	0.5 – 0.69	-5.15 x 10-7	-7.93 x 10-5	-3.26 x 10-5	-2.03 x 10-6	-7.94 x 10-5	-3.31 x 10-5
R-38	<u>></u> 0.7	-1.97 x 10-6	-1.24 x 10-4	-5.20 x 10-5	-3.68 x 10-6	-1.24 x 10-4	-5.16 x 10-5

Example Deemed Savings Calculation

Example 1. A contractor installs 1500 square feet of white asphalt shingle roofing with a 3-year rated reflectance of 0.55 on a home in Climate Zone 3 with a roof slope of 4/12, refrigerated air, and a gas furnace, which has existing ceiling insulation estimated at R-12.

Energy Savings = $(0.26 - 0.01) \times 1500 = 375 \, kWh$

Summer Peak Demand Savings = $2.03 \times 10^{-4} \times 1500 = 0.30 \text{ kW}$

Winter Peak Demand Savings = $-6.46x10^{-6} \times 1500 = -0.01 \, kW$

Example 2. A contractor applies a reflective coating to a 1200 square foot home with a heat pump and a low-slope roof in Climate Zone 2, with R-19 roof deck insulation. The coating has a 3-year rated reflectance of 0.75.

Energy Savings = $(0.32 - 0.11) \times 1200 = 252 \, kWh$

Summer Peak Demand Savings = N/A

Winter Peak Demand Savings = $-5.96 \times 10^{-5} \times 1200 = -0.07 \, kW$

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 15 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID BS-LtRoof.²⁵⁸

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Insulation R-value (as is, post measure installation of ceiling/roof insulation)
- Only for homes with a reported baseline R-value that is less than R-5:
 - Two pictures: (1) a picture showing the entire attic floor, and (2) a closeup picture of a ruler that shows the measurement of the depth of the insulation.

Note: The second photo type is required for each area of insulation where there are varying R-values less than R-5. Additionally, both photo types are required for all separate attic/ceiling areas, even when the installed R-value is the same.

- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - Because heating savings are negative, no adjustment factor will be applied to projects with missing documentation
- Square footage of reflective roofing material installed
- Slope of the roof (low or high slope)
- Three-year solar reflectance as rated by Cool Roof Rating Certification of the reflective material installed
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

²⁵⁸ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.
References and Efficiency Standards

Petitions and Rulings

Document Revision History

 Docket No. 47755-1. Petition of AEP Texas Inc., CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company. Petition To Approve Revisions To Residential And Nonresidential Deemed Savings Incorporated In Texas Technical Reference Manual Version 5.0 Program Year 2018 And Deemed Savings Derived For A New Measure. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

TRM version	Date	Description of change		
v6.0	11/2018	TRM v6.0 origin.		
v7.0	11/2019	TRM v7.0 update. Added savings for R-30 insulation.		
v8.0	10/2020	TRM v8.0 update. Updated savings tables. Added space heat adjustment factor and electric resistance documentation requirement.		
v9.0	10/2021	TRM v9.0 update. Updated savings tables for < R-5 baseline category. Updated EUL reference.		
v10.0	10/2022	TRM v10.0 update. Addressed sunsetting of ENERGY STAR Roof program.		
v11.0	10/2023	TRM v11.0 update. No revision.		

Table 246, Cool Roofs—Revision History

2.3.9 Solar Screens Measure Overview

TRM Measure ID: R-BE-SS Market Sector: Residential Measure Category: Building envelope Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Savings are presented for the installation of solar screens on west- and/or south-facing windows or glass doors. Deemed savings are calculated per square foot of treated window or door opening.

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes, or to customers in TRM Climate Zones 1 and 5 who have evaporative cooling systems. The heating savings penalty applies to homes that are centrally heated with either a furnace (gas or electric resistance) or a heat pump. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with gas or electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes to deemed savings that is specified for homes with central refrigerated air.

Solar screens must be installed on windows or glass doors that face west or south and receive significant direct sun exposure. Solar screens must block at least 65 percent of the solar heat gain to qualify for deemed savings.

Baseline Condition

The baseline is a single pane, clear glass, unshaded, west-, or south-facing window with a solar heat gain coefficient of 0.68. The baseline window area is assumed to be 7.5 percent of the total wall area.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²⁵⁹ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²⁶⁰ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

Solar screen material installed on south- or west-facing windows must reduce solar heat gain by at least 65 percent. Solar screens are not recommended for homes with electric resistance heat.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Deemed savings values have been estimated using calibrated simulation models. Specifically, these deemed savings estimates were developed using BEopt 2.6, running EnergyPlus 8.4 as the underlying simulation engine. A single modification was made to the prototype models for the various climate zone-HVAC type combinations to create the base case models for estimating savings for the solar screens measure. Windows facing all directions are assumed to be single-pane windows with U-values of 1.16 BTU/h-sq. ft.-R and solar heat gain coefficients (SHGC) of 0.76.

For the change case models, an 80 percent reduction was applied to the solar heat gain coefficient for the south- and west-facing windows.

Summer and winter peak demand savings are estimated by taking the difference in demand for the 20 hours identified from the TMY3 datasets in which the summer and winter peaks are most likely to occur, as described in TRM Volume 1 Section 4 - Peak Demand Definitions.

The model assumes the average solar screen installed blocks 80 percent of the solar heat gain attributed to the south and west-facing windows based on performance data from solar screens analyzed at sun angles of 30, 45, and 75 degrees to the window.²⁶¹

While it is recommended that solar screens be removed during winter to allow the advantage of free heat from the sun, they are often not removed seasonally. This may be due to solar screens serving as an insect screen in addition to blocking the sun or simply that they're installed in difficult-to-reach areas such as second-floor windows. The savings estimates presented herein assume that the installed solar screens remain in place year-round.

²⁵⁹ Electric Resistance Heating: <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²⁶⁰ Portable Heaters: <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

²⁶¹ Performance data from Matrix, Inc., Mesa, Arizona testing facility for Phifer Wire Products' SunTex screen, blocks 80 percent of solar heat gain.

Thermal Performance Improvement

Manual J and other studies researched indicate a thermal improvement to a window with a solar screen due to reduced air infiltration. The National Certified Testing Laboratories provided a report stating a 15 percent reduction in the thermal transmittance of a single pane, ¼" clear glass window with a solar screen added to the exterior.

Another study that was conducted for NFRC indicated between a 22 percent and 4 percent improvement to the U-value of a window with a solar screen. A single pane, clear window has a 22 percent improvement with the addition of a solar screen, whereas a double pane, spectrally selective low-E window may only have a 4 percent improvement. The deemed savings models assume an average 10 percent improvement in thermal performance with the addition of a solar screen.

Window Frame

The window frame accounts for 10-30 percent²⁶² of the window area, and since it is opaque and blocks sunlight from entering the home, it is factored into the model. An average of 15 percent frame area was incorporated into the performance of the window.

Example Calculation

Example 1. A home in Climate Zone 4 with a central air conditioning unit and an electric resistance furnace installs 75 square feet of solar screens.

Energy Savings = $(6.09 + (-3.21)) \times 75 = 216 \, kWh$ Summer Peak Demand Savings = $3.17 \times 10^{-3} \times 75 = 0.24 \, kW$ Winter Peak Demand Savings = $-2.32 \times 10^{-3} \times 75 = -0.17 \, kW$

Deemed Energy Savings Tables

Table 247 presents the deemed energy savings value per square foot of solar screen installed. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling value in Table 247 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 247 by a factor of 0.24.²⁶³

²⁶² Residential Windows – A Guide to New Technologies and Energy Performance, 2000.

²⁶³ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

	Cooling savings (kWh/sq. ft.)		Heating savings (kWh/sq. ft.)		
Climate zone	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	3.67	1.34	-0.62	-12.81	-4.54
Zone 2: Dallas	5.38	-	-0.29	-7.14	-2.56
Zone 3: Houston	5.33	-	-0.16	-4.69	-1.69
Zone 4: Corpus Christi	6.09	-	-0.09	-3.21	-1.16
Zone 5: El Paso	5.62	1.99	-0.44	-10.48	-3.81

Table 247. Solar Screens—Energy Savings (kWh) per Square Foot of Solar Screen

Deemed Summer Demand Savings Tables

Table 248 presents the deemed summer peak demand savings value per square foot of solar screen installed.

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling value in Table 248 by a factor of 0.6.

Table 248. Solar Screens—Summer Peak Demand Savings (kW) per Square Foot of Solar Screen

Climate zone	Refrigerated	Evaporative
Zone 1: Amarillo	2.89E-03	1.35E-03
Zone 2: Dallas	3.42E-03	-
Zone 3: Houston	3.29E-03	-
Zone 4: Corpus Christi	3.17E-03	-
Zone 5: El Paso	3.12E-03	1.07E-03

Deemed Winter Demand Savings Tables

Table 249 presents the deemed winter peak demand savings value per square foot of solar screen installed.

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate heating values in Table 249 by a factor of 0.24.²⁶⁴

²⁶⁴ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	-1.16E-04	-1.73E-03	-9.45E-04
Zone 2: Dallas	-5.20E-05	-1.32E-03	-7.96E-04
Zone 3: Houston	-1.07E-04	-2.65E-03	-1.71E-03
Zone 4: Corpus Christi	-7.68E-05	-2.32E-03	-1.08E-03
Zone 5: El Paso	-1.45E-04	-3.34E-03	-1.30E-03

Table 249. Solar Screens—Winter Peak Demand Savings (kW) per Square Foot of Solar Screen

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID BS-WinFilm.²⁶⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - Because heating savings are negative, no adjustment factor will be applied to projects with missing documentation
- Square footage of windows or door openings treated
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or other pre-approved method of installation verification

²⁶⁵ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 62. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 41070. Petition of El Paso Electric Company to Approve Revisions to Residential and Commercial Deemed Savings Based on Climate Data Specific to El Paso, Texas. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Added detail on methodology and model characteristics. Savings awarded for south-facing windows, in addition to east- and west-facing windows.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. Multiplier provided to adjust cooling side savings for homes with evaporative cooling due to lower energy usage and demand associated with evaporative coolers relative to refrigerated air. Climate Zone 2 savings values awarded for Climate Zone 5 homes with heat pumps.
v3.1	11/05/2015	TRM v3.1 update. Provided example savings calculations.
v4.0	10/10/2016	TRM v4.0 update. Updated energy and demand savings per new prototype energy simulation models. Added separate savings for homes with evaporative cooling.
v5.0	10/2017	TRM v5.0 update. Added explicit reference to mini-split technology. Added provision for low-income and hard-to-reach customers cooled by room air conditioners to claim savings.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updated documentation requirements.
v8.0	10/2020	TRM v8.0 update. Added space heat adjustment factor and electric resistance documentation requirement.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 250. Solar Screens—Revision History

2.3.10 ENERGY STAR[®] Windows Measure Overview

TRM Measure ID: R-BE-EW Market Sector: Residential Applicable Building Types: Single-family, multifamily, manufactured Measure Category: Building envelope Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Building simulation modeling

Measure Description

Replacing existing single- or double-pane windows with ENERGY STAR-compliant windows can help reduce heat transfer through window glazing, minimize air infiltration around window frames, reduce sun ultraviolet damage to household furniture, and lower household energy bills by an average of 12 percent nationwide.²⁶⁶

Window savings are calculated on a per-square-foot-of-window basis, inclusive of frame and sash.

Eligibility Criteria

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes, or to customers in TRM Climate Zones 1 and 5 who have evaporative cooling systems. Homes must be centrally heated with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with gas or electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes with central refrigerated air.

Baseline Condition

There are two base cases: single-pane and double-pane windows. In both cases, a metal frame is specified. Estimated U-Values and SHGCs for baseline windows are presented in Table 251. A weighted single- and double-pane baseline is also provided, assuming a standard distribution

²⁶⁶ ENERGY STAR Windows, Doors, & Skylights. <u>https://www.energystar.gov/products/res_windows_doors_skylights</u>.

of 46 percent single-pane and 54 percent double-pane based on 2020 RECS survey data.²⁶⁷ This baseline may be used exclusively if applied consistently for all projects.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²⁶⁸ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²⁶⁹ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

Number of panes	U-factor Btu/(h·sq. ft.·°F)	Solar heat gain coefficient (SHGC)
1	1.16	0.76
2	0.76	0.67

Table 251. Windows—Baseline Window Specification

High-Efficiency Condition

Performance criteria are based on ratings certified by the National Fenestration Rating Council (NFRC) and vary by location.

The table below displays the ENERGY STAR Final Version 7.0 Requirements for eligible windows, doors, and skylights effective October 23, 2023.²⁷⁰ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

US region, ENERGY STAR	U-factor Btu/(h·sq. ft.·°F)	Solar heat gain coefficient (SHGC)
North-Central	≤ 0.25	≤ 0.40
South-Central	≤ 0.28	≤ 0.23
Southern	≤ 0.32	≤ 0.23

Table 252. Windows—ENERGY STAR Requirements²⁷¹

²⁶⁷ 2020 Residential Energy Consumption Survey (RECS). Structural and geographic characteristics in the South and West regions (HC2.8). Analysis based on West South-Central census region. <u>https://www.eia.gov/consumption/residential/data/2020/</u>.

²⁶⁸ Electric Resistance Heating. <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²⁶⁹ Portable Heaters. <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

²⁷⁰ ENERGY STAR Residential Windows, Doors, and Skylights Final Version 6.0 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ES_Residential_WDS_V7_Final%20Specification%2020</u> 22.pdf.

²⁷¹ ENERGY STAR Windows, Doors, and Skylights Climate Zone Finder. Note that these zones differ from the TRM climate zones.
https://www.energy.etcr.gov/products/building_products/p

https://www.energystar.gov/products/building_products/residential_windows_doors_and_skylights/clim ate_zone/search.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Deemed savings values have been estimated using calibrated simulation models. Base case homes were fitted with single-pane and double-pane windows. Efficiency case homes were equipped with windows meeting the appropriate ENERGY STAR window specification for the location in which the window was to be installed. The climate zones in the ENERGY STAR windows specification were mapped to the Texas TRM climate zones as shown in Table 253.

Climate zone	US region, ENERGY STAR
Zone 1: Amarillo	North-Central
Zone 2: Dallas	South-Central
Zone 3: Houston	Southern
Zone 4: Corpus Christi	Southern
Zone 5: El Paso	South-Central

Table 253. Windows—TRM and ENERGY STAR Climate Zones

Deemed Energy Savings Tables

Table 254 through Table 256 present the energy savings (kWh) for the five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

For customers who participate in hard-to-reach (HTR) or low-income (LI) programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling values in Table 254 and Table 256 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate deemed heating values by a factor of 0.24.²⁷²

²⁷² This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 \div 42,000 = 0.24.

	Cooling savings		Heating savings		
Climate zone	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	2.83	0.98	0.29	6.70	3.16
Zone 2: Dallas	5.42	_	0.10	3.09	1.45
Zone 3: Houston	5.32	_	0.02	0.77	0.41
Zone 4: Corpus Christi	5.97	_	0.02	0.82	0.34
Zone 5: El Paso	5.67	1.90	0.00	0.99	0.69

Table 254. Windows—Energy Savings (kWh/sq. ft.), Single-Pane Baseline

Table 255. Windows—Energy Savings (kWh/sq. ft.), Double-Pane Baseline

	Cooling savings		Heating savings		
Climate zone	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	2.03	0.72	0.18	4.15	2.00
Zone 2: Dallas	4.11	-	0.04	1.47	0.76
Zone 3: Houston	3.96	-	-0.01	-0.21	0.01
Zone 4: Corpus Christi	4.45	-	0.00	-0.01	0.02
Zone 5: El Paso	4.24	1.46	-0.03	-0.18	0.16

Table 256. Windows—Energy Savings (kWh/sq. ft.), Weighted-Pane Baseline

	Cooling savings		Heating savings		
Climate zone	Refrigerated	Evaporative	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	2.40	0.84	0.23	5.33	2.54
Zone 2: Dallas	4.71	_	0.07	2.22	1.08
Zone 3: Houston	4.59	_	_	0.24	0.19
Zone 4: Corpus Christi	5.15	_	0.01	0.37	0.17
Zone 5: El Paso	4.90	1.66	-0.02	0.36	0.40

Deemed Summer Demand Savings Tables

Table 257 through Table 259 presents the summer demand savings (kW) for the five Texas climate zones.

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate deemed cooling values by a factor of 0.6.

Climate zone	Refrigerated	Evaporative
Zone 1: Amarillo	3.09E-03	1.16E-03
Zone 2: Dallas	3.89E-03	_
Zone 3: Houston	3.51E-03	_
Zone 4: Corpus Christi	2.99E-03	_
Zone 5: El Paso	3.86E-03	1.05E-03

Table 257. Windows—Summer Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline

Table 258. Windows—Summer Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline

Climate zone	Refrigerated	Evaporative
Zone 1: Amarillo	2.08E-03	8.36E-04
Zone 2: Dallas	2.80E-03	-
Zone 3: Houston	2.40E-03	_
Zone 4: Corpus Christi	2.15E-03	_
Zone 5: El Paso	2.76E-03	8.09E-04

Table 259. Windows—Summer Peak Demand Savings (kW/sq. ft.), Weighted-Pane Baseline

Climate zone	Refrigerated	Evaporative
Zone 1: Amarillo	2.55E-03	9.86E-04
Zone 2: Dallas	3.30E-03	-
Zone 3: Houston	2.91E-03	-
Zone 4: Corpus Christi	2.54E-03	_
Zone 5: El Paso	3.27E-03	9.20E-04

Deemed Winter Demand Savings Table 260 through Table 262 presents the winter demand savings (kW) for the five Texas climate zones.

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate deemed heating values by a factor of 0.24.²⁷³

²⁷³ This factor was derived based on expected capacity reduction assuming 1200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	2.01E-04	4.98E-03	2.43E-03
Zone 2: Dallas	1.77E-04	4.73E-03	2.74E-03
Zone 3: Houston	6.89E-05	1.78E-03	3.11E-04
Zone 4: Corpus Christi	4.78E-05	1.65E-03	6.68E-04
Zone 5: El Paso	2.83E-05	1.10E-03	5.00E-04

Table 260. Windows—Winter Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline

Table 261. Windows—Winter Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	1.32E-04	3.30E-03	1.64E-03
Zone 2: Dallas	1.12E-04	3.16E-03	1.89E-03
Zone 3: Houston	2.33E-05	6.68E-04	3.58E-06
Zone 4: Corpus Christi	1.53E-05	5.62E-04	2.34E-04
Zone 5: El Paso	1.31E-05	5.84E-04	2.76E-04

Table 262. Windows—Winter Peak Demand Savings (kW/sq. ft.), Weighted-Pane Baseline

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	1.64E-04	4.08E-03	2.00E-03
Zone 2: Dallas	4.42E-04	3.88E-03	2.28E-03
Zone 3: Houston	4.44E-05	1.18E-03	1.46E-04
Zone 4: Corpus Christi	3.03E-05	1.06E-03	4.34E-04
Zone 5: El Paso	2.01E-05	8.22E-04	3.79E-04

Example Deemed Savings Calculation

Example 1. A home in Climate Zone 1 with evaporative cooling and an electric resistance furnace replaces 125 square feet of single-pane windows with ENERGY STAR windows.

Energy Savings = $(0.98 + 6.70) \times 125 = 960 \, kWh$

Summer Peak Demand Savings = $1.16x10^{-3} \times 125 = 0.15 kW$

Winter Peak Demand Savings = $4.98 \times 10^{-3} \times 125 = 0.62 \text{ kW}$

Example 2. A home in Climate Zone 5 with a central air conditioning unit and a gas furnace replaces 250 square feet of windows with unknown number of panes with ENERGY STAR windows.

Energy Demand Savings = $(4.90 + (-0.02)) \times 250 = 1,220 \, kWh$

Summer Peak Demand Savings = $3.27 \times 10^{-3} \times 250 = 0.82 \, kW$

Winter Peak Demand Savings = $2.01 \times 10^{-5} \times 250 = 0.01 \, kW$

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

According to the GDS Associates Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures (2007), the Estimated Useful Life is 25 years for ENERGY STAR windows²⁷⁴.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Cooling type (evaporative cooling, central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings
- Baseline window number of panes (single, double, weighted)
 - The weighted baseline may be used if applied universally for all projects in a given program during the entire program year.
- U-factor and SHGC of each new window
- Area of new ENERGY STAR windows
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

²⁷⁴ "Measure Life Report: Residential and Commercial Industrial Lighting and HVAC Measures," The New England State Program Working Group (SPWG). June 2007. https://library.cee1.org/sites/default/files/library/8842/CEE_Eval_MeasureLifeStudyLights&HVACGDS_1Jun2007.pdf.

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 48. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 27903. Order Adopting New §25.184 as Approved at the August 21, 2003, Open Meeting and Submitted to the Secretary of State. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. Multiplier provided to adjust cooling side savings for homes with evaporative cooling due to lower energy usage and demand associated with evaporative coolers relative to refrigerated air. Climate Zone 2 savings values awarded for Climate Zone 5 homes.
v3.1	11/05/2015	TRM v3.1 update. Provided example savings calculations. Consolidated table formats.
v4.0	10/10/2016	TRM v4.0 update. Updated energy and demand savings per new prototype energy simulation models. Added separate savings for homes with evaporative cooling.
v5.0	10/2017	TRM v5.0 update. Added explicit reference to mini-split technology
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updated documentation requirements.
v8.0	10/2020	TRM v8.0 update. Added space heat adjustment factor and electric resistance documentation requirement.
v9.0	10/2021	TRM v9.0 update. No revision.
v10.0	10/2022	TRM v10.0 update. Added option for a weighted single-pane and double-pane baseline.
v11.0	10/2023	TRM v11.0 update. Updated ENERGY STAR specification. Added electric resistance documentation adjustment factor.

Table 263. Windows—Revision History

2.3.11 ENERGY STAR[®] Low-E Storm Windows Measure Overview

TRM Measure ID: R-BE-SW
Market Sector: Residential
Applicable Building Types: Single-family, multifamily, manufactured
Measure Category: Building envelope
Fuels Affected: Electricity and gas
Decision/Action Type(s): Retrofit
Program Delivery Type(s): Prescriptive
Deemed Savings Type: Look-up tables
Savings Methodology: Building simulation modeling and third-party field testing

Measure Description

ENERGY STAR low-e storm windows are a glazing attachment added to single- or double-pane windows. Storm windows are an affordable option for homes where full window replacement may be difficult. Low-emissivity (low-e) metal oxide coating decreases the summer heat gain and winter heat loss of an existing window by reducing thermal transmission. Thermal transmission is reduced as follows:

- The low-e coating acts as a selective heat mirror that reflects infrared light back outside during the summer and back onto the home during the winter.
- The marine-quality glazing and caulked or compression-sealed interface reduces air leakage and infiltration.
- The dead air space, or air barrier, created between the existing window and new storm window frame further reduces thermal transmission during both summer and winter.

The low-e coating is extremely durable and has negligible impact on visible light transmission.

Eligibility Criteria

A low-e storm window may be installed on the interior or exterior of the existing window assembly. Installation is a simple process that is often completed by residential homeowners without the assistance of professional contractors. Due to the simple installation process, low-e storm windows are sometimes installed seasonally. However, savings estimates assume windows are installed for the entire year. Therefore, windows should be permanently mounted and operable.

Cooling savings in this measure apply to customers with central or mini-split electric refrigerated air conditioning in their homes. Homes must be centrally heated with either a furnace (gas or electric resistance) or a heat pump to claim heating savings. Customers who participate in hard-to-reach (HTR) or low-income (LI) programs are eligible to claim reduced heating savings for homes heated with gas or electric resistance space heaters by applying an adjustment to deemed savings that is specified for that heat type. Customers participating in HTR or LI programs are also eligible to claim reduced cooling savings for homes cooled by one or more room air conditioners by applying an adjustment to deemed savings that is specified for homes with central refrigerated air.

Baseline Condition

The baseline condition is an existing single- or double-pane window assembly according to manufacturer specifications. A weighted single- and double-pane baseline is also provided, assuming a standard distribution of 46 percent single-pane and 54 percent double-pane based on 2020 RECS survey data.²⁷⁵ This baseline may be used exclusively if applied consistently for all projects.

Electric resistance heating baselines may refer to residences heated by a centralized forced-air furnace or by individual space heaters.²⁷⁶ Space heating primarily refers to electric baseboard zonal heaters controlled by thermostats or to portable plug-load heaters.²⁷⁷ Electric resistance heat controlled by a wall thermostat is eligible to claim the deemed savings presented in this measure. Homes with portable space heaters may be eligible for reduced savings as described in the Deemed Energy and Summer/Winter Demand Savings Tables sections.

High-Efficiency Condition

Performance criteria are based on ratings certified by the National Fenestration Rating Council (NFRC) and vary by location.

The table below displays the ENERGY STAR Final Version 1.0 Requirements for eligible exterior and interior storm windows effective September 5, 2018.²⁷⁸ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

²⁷⁵ 2020 Residential Energy Consumption Survey (RECS). Structural and geographic characteristics in the South and West regions (HC2.8). Analysis based on West South-Central census region. https://www.eia.gov/consumption/residential/data/2020/.

²⁷⁶ Electric Resistance Heating. <u>https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating</u>.

²⁷⁷ Portable Heaters. <u>https://www.energy.gov/energysaver/home-heating-systems/portable-heaters</u>.

²⁷⁸ ENERGY STAR Program Requirements Product Specification for Exterior and Interior Storm Windows, v1.0.
http://www.opergvgtar.gov/cites/dofault/files/Storm% 20Window% 20Product% 20Specification

https://www.energystar.gov/sites/default/files/Storm%20Window%20Product%20Specification_Final_0 .pdf.

US region, ENERGY STAR	Emissivity	Solar transmission
North-Central	≤ 0.22	Any
South-Central	≤ 0.22	≤ 0.55
Southern	≤ 0.22	≤ 0.55

Table 264. Low-E Storm Windows—ENERGY STAR Requirements

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Deemed savings values have been estimated using Lawrence Berkeley National Laboratory's RESFEN building simulation models for residential fenestration.²⁷⁹ The properties of low-e storm windows used in the RESFEN building models are presented in Table 265. This measure assumes equal weighting between the three low-e storm window glass options.

Table 265. Low-E Storm Windows—Window Assembly Properties²⁸⁰

Window type	Glass options	U-factor	SHGC	Air leakage
Storm window over	Low-e	0.35	0.47	1.25
existing single-pane	Low-e with solar control	0.35	0.32	1.25
Storm window over	Low-e	0.26	0.43	1.25
existing double-pane	Low-e with solar control	0.27	0.29	1.25

Assumed building characteristics are based on a 1,700 square-foot single-story and 2,800 square-foot two-story residence. The modeled residence has a 15 percent window-to-floor-area ratio. Assumed building characteristics are presented in Table 266.

Table 266. Low-E Storm Windows—Modeled Building Characteristics

Characteristic	Model assumption
Area	Single-story: 1,700 sq. ft. Two-story: 2,800 sq. ft.
Existing window performance ^{281,282}	Single pane: 0.88 U-factor, 0.61 SHGC, 2 cfm/sq. ft. air infiltration Double pane: 0.51 U-factor, 0.57 SHGC, 2 cfm/sq. ft. air infiltration
Existing window area	15 percent of floor area

²⁷⁹ RESFEN window tool. LBNL. <u>https://windows.lbl.gov/software/resfen</u>.

https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-22864rev2.pdf.

²⁸⁰ Averaged values from the selected products in Attachments Energy Rating Council (AERC). <u>https://aercenergyrating.org/product-search/residential-product-search/</u>.

²⁸¹ Culp, TD and KA Cort. "Database of Low-e Storm Window Energy Performance across US Climate Zones." US DOE, September 2014.

²⁸² Air infiltration assumption from: "AERC 1.2: Physical Test Methods for Measuring Energy Performance Properties of Fenestration Attachments." AERC, 2018. <u>www.aercnet.org</u>.

Characteristic	Model assumption
Existing window frame	Wood double-hung
Foundation	Slab on-grade
Insulation	Newer construction: IECC 2006 based on climate zone Older construction: See RESFEN 6 documentation
HVAC efficiency	Newer construction: 13 SEER, 7.7 HSPF, 0.8 AFUE for IECC Climate Zones 1-3 and 0.9 AFUE for IECC Climate Zones 4-8 Older construction: 10 SEER, 6.8 HSPF, 0.78 AFUE

Deemed Energy Savings Tables

Table 267 through Table 269 present the energy savings (kWh) for the five Texas climate zones. Annual energy savings are the sum of cooling and heating savings for the appropriate equipment types.

For customers who participate in HTR or LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate cooling values in Table 267 and Table 269 by a factor of 0.6. Similarly, for HTR/LI customers, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate deemed heating values by a factor of 0.24.²⁸³

Savings are an average of newer and older construction baselines for retrofit applications.

Table 267. Low-E S	torm	Wir	ndows—Ene	ergy Savings (kWh/sq. ft.), Single-Pane Baseline

	Cooling savings	Heating savings			
Climate zone	Refrigerated	Gas	Electric resistance	Heat pump	
Zone 1: Amarillo	1.49	_	15.66	5.34	
Zone 2: Dallas	2.52	_	6.65	2.09	
Zone 3: Houston	2.49	_	4.55	1.48	
Zone 4: Corpus Christi	3.22	_	2.82	0.80	
Zone 5: El Paso	2.35	_	6.00	2.06	

Table 268. Low-E Storm Windows—Energy Savings (kWh/sq. ft.), Double-Pane Baseline

	Cooling savings	Heating savings		
Climate zone	Refrigerated	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	1.56	_	6.23	2.35
Zone 2: Dallas	2.50	_	2.46	0.88
Zone 3: Houston	2.62	_	1.84	0.67

²⁸³ This factor was derived based on expected capacity reduction assuming 1,200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

	Cooling savings	Heating savings		
Climate zone	Refrigerated	Gas	Electric resistance	Heat pump
Zone 4: Corpus Christi	3.21	_	1.05	0.32
Zone 5: El Paso	2.37	_	1.90	0.79

Table 269. Low-E Storm Windows—Energy Savings (kWh/sq. ft.), Weighted-Pane Baseline

	Cooling savings	Heating savings		
Climate zone	Refrigerated	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	1.53	_	10.58	3.73
Zone 2: Dallas	2.51	_	4.39	1.44
Zone 3: Houston	2.56	_	3.09	1.04
Zone 4: Corpus Christi	3.21	_	1.87	0.54
Zone 5: El Paso	2.36	_	3.79	1.38

Deemed Summer Demand Savings Tables

Table 270 through Table 272 present the summer demand savings (kW) for the five Texas climate zones.

For customers who participate in HTR/LI programs, cooling savings may be claimed for homes cooled by one or more room air conditioners by multiplying appropriate deemed cooling values by a factor of 0.6.

Table 270. Low-E Storm Windows—Summer Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline

Climate zone	Refrigerated air
Zone 1: Amarillo	0.0016
Zone 2: Dallas	0.0018
Zone 3: Houston	0.0016
Zone 4: Corpus Christi	0.0016
Zone 5: El Paso	0.0016

Table 271. Low-E Storm Windows—Summer Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline

Climate zone	Refrigerated air
Zone 1: Amarillo	0.0016
Zone 2: Dallas	0.0017
Zone 3: Houston	0.0016
Zone 4: Corpus Christi	0.0016
Zone 5: El Paso	0.0015

Climate zone	Refrigerated air
Zone 1: Amarillo	0.0016
Zone 2: Dallas	0.0017
Zone 3: Houston	0.0016
Zone 4: Corpus Christi	0.0016
Zone 5: El Paso	0.0015

Table 272. Low-E Storm Window—Summer Peak Demand Savings (kW/sq. ft.),Weighted-Pane Baseline

Deemed Winter Demand Savings Tables

Table 273 through Table 275 present the winter demand savings (kW) for the five Texas climate zones.

For customers who participate in HTR/LI programs, heating savings may be claimed for homes with electric resistance space heaters serving as the primary heating source by multiplying appropriate deemed heating values by a factor of 0.24.²⁸⁴

Table 273. Low-E Storm Windows—Winter Peak Demand Savings (kW/sq. ft.), Single-Pane Baseline

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	_	0.0116	0.0041
Zone 2: Dallas	_	0.0102	0.0039
Zone 3: Houston	_	0.0105	0.0011
Zone 4: Corpus Christi	_	0.0057	0.0016
Zone 5: El Paso	_	0.0067	0.0015

Table 274. Low-E Storm Windows—Peak Demand Savings (kW/sq. ft.), Double-Pane Baseline

Climate zone	Gas	Electric resistance	Heat pump
Zone 1: Amarillo	_	0.0050	0.0019
Zone 2: Dallas	_	0.0053	0.0022
Zone 3: Houston	_	0.0039	0.0002
Zone 4: Corpus Christi	_	0.0019	0.0037
Zone 5: El Paso	_	0.0035	0.0014

²⁸⁴ This factor was derived based on expected capacity reduction assuming 1,200 sq. ft. (historical analysis of HTR participants) x 0.35 BTU/sq. ft. = 42,000 BTU for central electric furnaces and two 1,500-watt portable heaters per home rated at 5,100 BTU/heater. Taking the ratio of portable to furnace capacity yields 10,200 ÷ 42,000 = 0.24.

Climate zone	Gas	Electric resistance	Heat pump	
Zone 1: Amarillo	_	0.0080	0.0029	
Zone 2: Dallas	_	0.0076	0.0030	
Zone 3: Houston	_	0.0069	0.0006	
Zone 4: Corpus Christi	_	0.0037	0.0027	
Zone 5: El Paso	_	0.0050	0.0014	

Table 275. Low-E Storm Windows—Winter Peak Demand Savings (kW/sq. ft.),Weighted-Pane Baseline

Claimed Peak Demand Savings

No load shape could be extracted from the building simulation for this measure. Due to the equivalent load shape with the existing ENERGY STAR Windows measure, demand savings were estimated by applying the ratio of energy to demand savings from the windows measure to the modeled storm windows energy savings.

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for low-e storm windows is 20 years according to the US Department of Energy.²⁸⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Cooling type (central refrigerated cooling, room air conditioner, none)
- Heating type (central gas, portable gas, central electric resistance, portable electric resistance, heat pump, none)
 - Additional documentation is required to validate electric resistance heat (e.g., nameplate photo, utility inspection, or other evaluator-approved approach); sampling is allowed for multifamily complexes
 - If documentation is not provided, an adjustment factor of 0.75 will be applied to the heating energy and winter demand savings

²⁸⁵ Culp, TD and KA Cort. "Database of Low-e Storm Window Energy Performance across US Climate Zones." US DOE, September 2014. <u>https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-22864rev2.pdf</u>.

- Baseline window number of panes (single, double, weighted)
 - The weighted baseline may be used if applied universally for all projects in a given program during the entire program year.
- Emissivity and solar transmission of each new window
- Area of new ENERGY STAR storm windows
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v9.0	10/2021	TRM v9.0 origin.
v10.0	10/2022	TRM v10.0 update. Added option for a weighted single-pane and double-pane baseline.
v11.0	10/2023	TRM v11.0 update. Added electric resistance documentation adjustment factor.

Table 276. Low-E Storm Windows—Revision History

2.4 RESIDENTIAL: WATER HEATING

2.4.1 Water Heater Installations—Electric Tankless and Fuel Substitution Measure Overview

TRM Measure ID: R-WH-WH

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily manufactured

Fuels Affected: Electricity and gas

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves installing a new electric tankless²⁸⁶ or gas-fueled water heater (storage or tankless) in place of an electric storage water heater.

Eligibility Criteria

This measure involves installing a gas storage, gas (instantaneous tankless), or electric tankless water heater in place of an electric storage water heater that meets all the additional requirements described below. Currently, there are no conventional, electrically fueled storage units that sufficiently exceed the new federal standard to merit inclusion as an efficient condition in these deemed savings.

Savings may be awarded for installations in newly constructed homes where customer and utility representatives provide written indication that an electric storage water heater would otherwise have been installed, along with relevant design documentation showing an electric storage water heater.

²⁸⁶ Currently, most electric tankless water heaters are rated at or near the federal standard and may yield negative or no energy savings using the current baseline. However, this measure maintains eligibility for any electric tankless water heaters that may be rated above current minimum efficiency requirements.

Baseline Condition

The baseline condition is an electric storage water heater with baseline efficiency Uniform Energy Factor (UEF) determined by tank size and first hour rating (FHR), a proxy for draw pattern. This baseline is specified according to the current federal energy efficiency standards for residential water heaters with tank sizes from 20 to 120 gallons, effective April 16, 2015, as published in 10 CFR Part 430.32 of the Federal Register (see Table 277).²⁸⁷

This baseline applies to replace-on-burnout and new construction applications. No additional savings are awarded for early retirement. Early retirement projects should calculate savings using an assumed replace-on-burnout baseline.

Rated storage volume	Draw pattern	First hour rating (FHR) ^{288,289}	Uniform energy factor (UEF) ²⁹⁰
≥ 20 gal and	Very small usage	0 ≤ FHR < 18	0.8808 - (0.0008 × V _r)
≤ 55 gal	Low usage	18 ≤ FHR < 51	0.9254 - (0.0003 × Vr)
	Medium usage	51 ≤ FHR < 75	0.9307 - (0.0002 × V _r)
	High usage	75 ≤ FHR	0.9349 - (0.0001 × Vr)
> 55 gal	Very small usage	0 ≤ FHR < 18	1.9236 - (0.0011 × V _r)
and ≤ 120 gal	Low usage	18 ≤ FHR < 51	2.0440 - (0.0011 × Vr)
	Medium usage	51 ≤ FHR < 75	2.1171 - (0.0011 × Vr)
	High usage	75 ≤ FHR	2.2418 - (0.0011 × V _r)

Table 277. DHW Replacements—Federal Standard for Residential Electric Storage Water Heaters

High-Efficiency Condition

Eligible equipment must be compliant with the current ENERGY STAR v5.0 specification effective April 18, 2023, with qualified products meeting the minimum requirements from

Table 278²⁹¹. However, the ENERGY STAR v5.0 specification does not cover electric tankless water heaters or gas storage products with an FHR less than 51. In these cases, the high efficiency condition corresponds to the respective federal standards for residential water heaters.²⁹²

²⁸⁷ 10 CFR Part 430.32 Energy and water conservation standards and their effective dates. Available online: <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=32</u>.

²⁸⁸ "The Revised Method of Test for Residential Water Heating and Its Impact on Incentive Programs" presentation, Glanville, Paul. ACEEE Hot Water Forum. February 24, 2015. https://aceee.org/sites/default/files/pdf/conferences/hwf/2015/6B-Glanville.pdf.

²⁸⁹ Assume FHR equal to that of installed water heater.

²⁹⁰ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.17.

²⁹¹https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Residential%20Water%20Heater s%20Version%205.0%20Specification%20and%20Partner%20Commitments_0.pdf.

²⁹² 10 CFR Part 430.32 Energy and water conservation standards and their effective dates. Available online: <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=32</u>.

Table 278 has consolidated both sources in one location for ease of reference.

For water heater replacement and fuel substitution, the new unit must meet the following federal minimum energy factor shown in

Table 278. Water heaters must be installed in accordance with local code requirements.

FHR does not apply to tankless water heaters, which are rated in terms of max gallons per minute (GPM). For gas storage water heaters, reported draw pattern should be consistent with the ENERGY STAR certificate.²⁹³

DHW type	Rated storage volume	Draw pattern	FHR	UEF ²⁹⁵
Electric	Electric < 2 gal	Very small usage	N/A	0.91
tankless ²⁹⁶		Low usage		0.91
		Medium usage		0.91
		High usage		0.92
Gas	< 2 gal and	Very small usage	N/A	0.95
tankless	> 50,000 Btuh	Low usage		
		Medium usage		
		High usage		
Gas	≥ 20 gal and	Very small usage	0 ≤ FHR < 18	0.3456 - (0.0020 x Vr)
storage	≤ 55 gal	Low usage	18 ≤ FHR < 51	0.5982 – (0.0019 x V _r)
		Medium usage	51 ≤ FHR < 75	0.81
		High usage	75 ≤ FHR	0.86
	> 55 gal and ≤ 100 gal	Very small usage	0 ≤ FHR < 18	0.86
		Low usage	18 ≤ FHR < 51	
		Medium usage	51 ≤ FHR < 75	
		High usage	75 ≤ FHR	

Table 278. DHW Replacements—Efficiency Standards²⁹⁴

²⁹³ As of August 2023, all gas tankless products on the ENERGY STAR qualified product listing were rated as high usage. <u>https://www.energystar.gov/productfinder/product/certified-water-heaters/results</u>.

²⁹⁴ 10 CFR Part 430.32 Energy and water conservation standards. Available online: <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=32</u>.

²⁹⁵ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.17.

²⁹⁶ There is no ENERGY STAR tankless water heater category because all products perform at or near the federal standard. These units are still eligible to claim savings against the *electric storage water heater* baseline if draw pattern and UEF can be verified using manufacturer specification sheets or other documentation.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

All deemed savings values are calculated using the following standard algorithms for water heating. These algorithms assume a replace-on-burnout or new construction scenario but may be used to award savings for early retirement projects.

Electric Tankless Water Heater

Energy Savings Algorithm

$$Energy \ Savings \ [\Delta kWh] = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,avg}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{UEF_{post}}\right)}{3,412}$$

Equation 67

Where:

ρ	=	Water density [lbs/gal] = 8.33
$C_{ ho}$	=	Specific heat of water $[Btu/lb \cdot \circ F] = 1$
GPY	=	Estimated annual hot water use in gallons/year, specified by number of bedrooms in the home (see Table 279). For midstream/upstream applications, the number of bedrooms is assumed to be 3. ²⁹⁷

	Number of bedrooms			S
Climate zone	1	2	3	4
Zone 1: Amarillo	15,476	20,171	24,866	29,561
Zone 2: Dallas	14,778	19,244	23,710	28,177
Zone 3: Houston	14,492	18,864	23,236	27,608
Zone 4: Corpus Christi	14,213	18,494	22,775	27,056
Zone 5: El Paso	14,905	19,412	23,920	28,427

Table 279. DHW Replacements—Water Heater Consumption (Gal/Year)²⁹⁸

²⁹⁷ Weighted average of number of bedrooms in West South-Central Region. 2020 RECS Survey Data – Table HC2.8 Structural and geographic characteristics of homes in the South and West regions, 2020. <u>https://www.eia.gov/consumption/residential/data/2020/</u>.

²⁹⁸ Building America Research Benchmark Definition. December 2009, p 13. Available online: <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>.

Tsetpoint	=	Water heater setpoint temperature [°F $f^{299} = 120$
T _{supply,avg}	=	Average annual supply water temperature [°F] (see Table 280)
UEF _{pre}	=	Baseline uniform energy factor (see Table 278) ³⁰⁰
UEF _{post}	=	Uniform energy factor of new water heater (see
Table 278)		
3.412	=	Constant to convert from Btu to kWh

Table 280. DHW Re	placements—Wate	r Mains Tem	perature ((°F) [:]	301
-------------------	-----------------	-------------	------------	-------------------	-----

		T _{supply,seasonal}		
Climate zone	T _{supply,avg}	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Demand Savings Algorithm

Peak Demand Savings [
$$\Delta kW$$
]

$$= \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply, seasonal}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{UEF_{post}}\right)}{365 \times 3,412} \times CF_{S/W}$$

Where:

 $CF_{S/W}$ = Summer/winter peak coincidence factor (see Table 281) $T_{supply,seasonal}$ = Seasonal supply water temperature [°F] (see Table 280)

²⁹⁹ 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.

³⁰⁰ Note that for efficient water heater installations in newly-constructed homes, the baseline energy factor is the efficiency of the electric storage water heater that would otherwise have been installed, according to appropriate design documentation.

³⁰¹ Based on typical meteorological year (TMY) 3 dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

Climate zone	Summer	Winter
Zone 1: Amarillo	0.042	0.067
Zone 2: Dallas	0.039	0.068
Zone 3: Houston	0.041	0.070
Zone 4: Corpus Christi	0.041	0.065
Zone 5: El Paso	0.036	0.067

Table 281. DHW Replacements—Coincidence Factors³⁰²

Gas Storage or Tankless Water Heater (Fuel Substitution)

Energy and demand savings awarded for replacing an electric water heater with a gas storage or gas tankless water heater are equal to the consumption of the unit replaced.

Energy Savings Algorithm for Units Less than 55 Gallons

Energy Savings
$$[\Delta kWh] = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,annual}) \times \left(\frac{1}{UEF_{pre}}\right)}{3,412}$$

Equation 69

Demand Savings Algorithm for Units Less than 55 Gallons

Summer Peak Demand Savings [
$$\Delta kW$$
]
= $CF_S \times \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,summer}) \times (\frac{1}{UEF_{pre}})}{365 \times 3,412}$

Equation 70

Winter Peak Demand Savings $[\Delta kW]$

 $= CF_W \times \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,winter}) \times \left(\frac{1}{UEF_{pre}}\right)}{365 \times 3,412}$

Equation 71

³⁰² Probability weighted peak load factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from Building America Performance Analysis Procedures for Existing Homes, page 18, Figure 4: Combined Domestic Hot Water Use Profile. <u>https://www.nrel.gov/docs/fy06osti/38238.pdf</u>.

Example Deemed Savings Calculation

Example 1. An existing 40-gallon electric water heater in a two-bedroom home in Dallas is replaced with a new, electric tankless water heater with a high usage draw pattern and a uniform energy factor of 0.92. Important: note that energy savings can be negative if the UEF rating does not exceed the equivalent electric storage water heater baseline.

$$\Delta kWh = \frac{\left[8.33 \times 1 \times 19,244 \times (120 - 71.8) \times \left(\frac{1}{0.9309} - \frac{1}{0.92}\right)\right]}{3,412} = -29 \ kWh$$
$$\Delta kW_S = 0.042 \times \frac{\left[8.33 \times 1 \times 19,244 \times (120 - 84) \times \left(\frac{1}{0.930} - \frac{1}{0.92}\right)\right]}{365 \times 3,412} = -0.002 \ kW$$
$$\Delta kW_W = 0.068 \times \frac{\left[8.33 \times 1 \times 19,244 \times (120 - 60.6) \times \left(\frac{1}{0.9227} - \frac{1}{0.99}\right)\right]}{365 \times 3,412} = -0.007 \ kW$$

Example 2. An old 30-gallon electric water heater in a one-bedroom house in El Paso is replaced with a new gas storage water heater with a first-hour rating of 51 gal/hr and a uniform energy factor of 0.81.

 $\Delta kWh = \frac{\left[8.33 \times 1 \times 14,905 \times (120 - 70.4) \times \left(\frac{1}{0.9247}\right)\right]}{3,412} = 1,952 \, kWh$ $\Delta kW_S = 0.036 \times \frac{\left[8.33 \times 1 \times 14,905 \times (120 - 81.5) \times \left(\frac{1}{0.9247}\right)\right]}{365 \times 3,412} = 0.15 \, kW$ $\Delta kW_W = 0.067 \times \frac{\left[8.33 \times 1 \times 14,905 \times (120 - 60.4) \times \left(\frac{1}{0.9247}\right)\right]}{365 \times 3,412} = 0.43 \, kW$

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 20 years for a tankless water heater (gas or electric), as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-Instant-Res.³⁰³

The EUL is 11 years for a high-efficiency gas water heater, as specified for EUL ID WtrHt-Res-Gas.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of bedrooms (not required for upstream/midstream program delivery)
- Water heater quantity
- Manufacturer and model number of new water heater
- ENERGY STAR certificate matching model number (if applicable)
- Baseline volume (gallons), FHR, and UEF
- New water heater volume (gallons, zero if tankless), FHR, and UEF
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

³⁰³ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. Updated measure to require electric tankless rather than electric storage water heater installation for non-fuel-switching option. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	01/30/2015	TRM v2.1 update. Updated to reflect that new construction permitted to claim savings subject to documentation requirements and that gas-fueled tankless water heaters are eligible for installation.
v3.0	04/10/2015	TRM v3.0 update. Amended fuel substitution savings to reflect the full consumption of the electric unit being replaced. Revised demand savings for installing an electric tankless unit to reflect daily usage patterns.
v3.1	11/05/2015	TRM v3.1 update. Clarified the baseline for water heaters greater than 55 gallons.
v4.0	10/10/2016	TRM v4.0 update. Updated HPWH baseline usage for gas storage water heaters larger than 55 gallons.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. Implemented new baseline and high-efficiency standards.
v8.0	10/2020	TRM v8.0 update. Clarified HPWH baseline for tanks sizes over 55 gal. Updated algorithms to refer to UEF.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR specification v4.0. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. Removed requirement to install HPWH for DHW > 55 gallons. Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.

Table 282. DHW Replacements—Revision History

2.4.2 ENERGY STAR[®] Heat Pump Water Heaters Measure Overview

TRM Measure ID: R-WH-HW Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity and gas Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the installation of an ENERGY STAR-compliant heat pump water heater (HPWH). Note that this measure does not account for the interactive air conditioning energy savings and heating penalty associated with the HPWH when installed inside conditioned space.

Eligibility Criteria

This measure applies to residential, electric, and storage-type heat pump water heaters. Heat pump add-ons to existing storage water heaters are ineligible. The measure does not apply to the replacement of gas water heaters.

First hour rating (FHR) is a proxy for draw pattern. There are no certified ENERGY STAR water heaters in the very small usage category, and that draw pattern is not covered in the current ENERGY STAR specification. Approximately 94 percent of certified units are in the medium and high usage categories. However, HPWHs with low usage draw patterns are eligible as long as they comply with minimum ENERGY STAR FHR requirements.

Baseline Condition

The baseline condition is an electric storage water heater (EWH) with baseline efficiency uniform energy factor (UEF) determined by tank size and FHR. This baseline is specified according to the current federal energy efficiency standards for residential water heaters with tank sizes 20 to 120 gallons, effective April 16, 2015, as published in 10 CFR Part 430.32 of the Federal Register.³⁰⁴

³⁰⁴ 10 CFR Part 430.32 Energy and water conservation standards and their effective dates. <u>www.ecfr.gov/cgi-bin/text-</u> idx?SID=80dfa785ea350ebeee184bb0ae03e7f0&mc=true&node=se10.3.430 132&rgn=div8.

This baseline applies to replace-on-burnout and new construction applications. No additional savings are awarded for early retirement at this time. Early retirement projects should calculate savings using an assumed replace-on-burnout baseline. However, the Department of Energy (DOE) issued a notice of proposed rulemaking for consumer water heaters on July 27, 2023.³⁰⁵ The TRM will add an early retirement baseline after the effective date for the new standard.

Rated storage volume	Draw pattern	FHR ^{306,307}	UEF ³⁰⁸
≥ 20 gal and	Very small usage	0 ≤ FHR < 18	0.8808 - (0.0008 × Vr)
≤ 55 gal	Low usage	18 ≤ FHR < 51	0.9254 - (0.0003 × V _r)
	Medium usage	51 ≤ FHR < 75	0.9307 - (0.0002 × V _r)
	High usage	75 ≤ FHR	0.9349 - (0.0001 × V _r)
> 55 gal and	Very small usage	0 ≤ FHR < 18	1.9236 - (0.0011 × V _r)
≤ 120 gal	Low usage	18 ≤ FHR < 51	2.0440 - (0.0011 × V _r)
	Medium usage	51 ≤ FHR < 75	2.1171 - (0.0011 × V _r)
	High usage	75 ≤ FHR	2.2418 - (0.0011 × V _r)

Table 283. HPWHs—Federal Standard for Residential Water Heaters

High-Efficiency Condition

Eligible equipment must be compliant with the current ENERGY STAR v5.0 specification, effective April 18, 2023. Qualified products must meet the minimum requirements from Table 284.³⁰⁹

	Criteria	ENERGY STAR Requirements
UEFr	Integrated HPWH	UEF ≥ 3.30
	Integrated HPWH, 120 volt/15 amp circuit	UEF ≥ 2.20
	Split-system HPWH	UEF ≥ 2.20

Table 284. HPWHs—ENERGY STAR Specification

³⁰⁵ Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters. <u>https://www.regulations.gov/document/EERE-2017-BT-STD-0019-0063</u>.

 ³⁰⁹ ENERGY STAR HPWH Key Product Criteria. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Residential%20Water%20Heate rs%20Version%205.0%20Specification%20and%20Partner%20Commitments_0.pdf.³¹⁰ ENERGY STAR-certified water heaters qualified product listing. https://www.energystar.gov/productfinder/product/certified-water-heaters/?formId=96913462-da32-4dc2-ad53f31203352209&scrollTo=546&search_text=&type_filter=Hybrid%2FElectric+Heat+Pump&fuel_filter=El ectric&brand_name_isopen=0&input_rate_thousand_btu_per_hour_isopen=0&markets_filter=United+

³⁰⁶ "The Revised Method of Test for Residential Water Heating and Its Impact on Incentive Programs" presentation, Glanville, Paul. ACEEE Hot Water Forum. February 24, 2015. https://aceee.org/sites/default/files/pdf/conferences/hwf/2015/6B-Glanville.pdf.

³⁰⁷ Assume FHR equal to that of installed water heater.

³⁰⁸ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.17.

Criteria	ENERGY STAR Requirements	
First-hour rating	FHR ≥ 45 gallons per hour	
Warranty	Warranty ≥ 6 years on sealed system	
Safety	UL 174 and UL 1995 or UL 60335-2-40	
Lower compressor cut-off temperature (reporting requirement only)	Report ambient temperature below which the compressor cuts off and electric- resistance-only operation begins	

A complete list of certified ENERGY STAR HPWHs can be accessed via the ENERGY STAR program website.³¹⁰

HPWHs depend on adequate ventilation to properly function, including adequate space for both inlet and outlet airflow, and should be installed in spaces in where temperature does not drop below a certain level. The Department of Energy recommends installation in locations that remain above 40°F year-round and provide a minimum of 1,000 cubic feet of air space around the water heater.³¹¹ Modern HPWHs operate with little to no change in performance with considerably less air volume. Updated recommendations reduce the air volume requirement to 700 cubic feet.³¹² These conditions are not enforced as an eligibility requirement but should be considered when installing an HPWH.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

HPWH savings are calculated on a per-unit basis. Deemed savings are calculated utilizing the standard algorithms outlined below for water heating. Consumption in gallons per year us estimated using data from Building America Performance Analysis Procedures for Existing Homes.³¹³ Temperature data are based on TMY3 dataset.³¹⁴

<u>States&zip_code_filter=&product_types=Select+a+Product+Category&sort_by=brand_name&sort_dire</u> <u>ction=asc&page_number=0&lastpage=0</u>.

³¹⁰ ENERGY STAR-certified water heaters qualified product listing. <u>https://www.energystar.gov/productfinder/product/certified-water-heaters/?formId=96913462-da32-4dc2-ad53-f31203352209&scrollTo=546&search_text=&type_filter=Hybrid%2FElectric+Heat+Pump&fuel_filter=Electric&brand_name_isopen=0&input_rate_thousand_btu_per_hour_isopen=0&markets_filter=United+States&zip_code_filter=&product_types=Select+a+Product+Category&sort_by=brand_name&sort_direction=asc&page_number=0&lastpage=0.</u>

³¹¹ Heat Pump Water Heaters. Department of Energy, May 2012. http://energy.gov/energysaver/articles/heat-pump-water-heaters

³¹² Heat Pump Water Heaters – Code Compliance Brief, U.S. Department of Energy Building Technologies Office. <u>https://basc.pnnl.gov/code-compliance/heat-pump-water-heaters-code-compliance-brief</u>.

³¹³ Building America Performance Analysis Procedures for Existing Homes, page 18, figure 4: combined domestic hot water use profile. <u>https://www.nrel.gov/docs/fy06osti/38238.pdf</u>..

³¹⁴ TMY data is available through the National Solar Radiation Database (NSRDB) Data Viewer, <u>https://maps.nrel.gov/nsrdb-viewer/</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatory-filings/deemed-savings</u>.

For upstream/midstream program delivery, a default of three bedrooms may be used to calculate the annual hot water use in gallons per year (GPY). The default number of bedrooms was estimated by taking the weighted average calculated from 2020 RECS Survey Data.

Energy Savings Algorithm

 $Energy \, Savings \, [\Delta kWh] = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,annual}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{UEF_{post}}\right)}{3,412}$

Equation 72

Where:

ρ	=	Water density [lbs/gal] = 8.33
$C_{ ho}$	=	Specific heat of water $[Btu/lb\cdot \circ F] = 1$
GPY	=	Estimated annual hot water use in gallons/year, specified by number of bedrooms in the home (see Table 285). For midstream/upstream applications, the number of bedrooms is assumed to be 3. ³¹⁵

Table 285. HPWHs—Water Heater Consumption (Gal/Year) 316

	Number of bedrooms			
Climate zone	1	2	3	4
Zone 1: Amarillo	15,476	20,171	24,866	29,561
Zone 2: Dallas	14,778	19,244	23,710	28,177
Zone 3: Houston	14,492	18,864	23,236	27,608
Zone 4: Corpus Christi	14,213	18,494	22,775	27,056
Zone 5: El Paso	14,905	19,412	23,920	28,427

 $T_{setpoint}$ = Water heater setpoint temperature [°F]³¹⁷ = 120

T_{supply,annual}

=

Average annual supply water temperature [°F] (see Table 286)

³¹⁵ Weighted average of number of bedrooms in West South-Central Region. 2020 RECS Survey Data – Table HC2.8 Structural and geographic characteristics of homes in the South and West regions, 2020. <u>https://www.eia.gov/consumption/residential/data/2020/</u>.

³¹⁶ Building America Research Benchmark Definition. December 2009, p 13. Available online: <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>.

³¹⁷ 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.
- UEF_{pre} = Baseline uniform energy factor (calculate per Table 283)³¹⁸
- *UEF*_{post} = *Uniform* energy factor of new water heater
- 3,412 = Constant to convert from Btu to kWh

		T _{supply,seasonal}		
Climate zone	T _{supply,annual}	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Demand Savings Algorithm

$$Peak Demand Savings [\Delta kW] = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply, seasonal}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{UEF_{post}}\right)}{365 \times 3,412} \times CF_{S/W}$$

Equation 73

Where:

$$T_{supply,seasonal} =$$
 Seasonal supply water temperature [°F] (see Table 286)
 $CF_{S/W} =$ Summer/winter peak coincidence factor (see Table 287)

Table 287.	HPWHs-	-Coincidence	Factors ³²⁰

Climate zone	Summer	Winter
Zone 1: Amarillo	0.042	0.067
Zone 2: Dallas	0.039	0.068
Zone 3: Houston	0.041	0.070
Zone 4: Corpus Christi	0.041	0.065

³¹⁸ Note that for efficient water heater installations in new construction homes, the baseline uniform energy factor is the efficiency of the electric storage water heater that would otherwise have been installed, according to appropriate design documentation.

³¹⁹ Based on TMY3 dataset. TMY data is available through the National Solar Radiation Database (NSRDB) Data Viewer, <u>https://maps.nrel.gov/nsrdb-viewer/</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatory-filings/deemed-savings</u>.

³²⁰ Probability weighted peak load factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from Building America Performance Analysis Procedures for Existing Homes, page 18, Figure 4: Combined Domestic Hot Water Use Profile. https://www.nrel.gov/docs/fy06osti/38238.pdf.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for this measure is 13 years.³²¹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of bedrooms (not required for upstream/midstream program delivery)
- Manufacturer and model number of new HPWH
- ENERGY STAR certificate matching model number (if applicable)
- HPWH quantity
- HPWH type (integrated HPWH, integrated HPWH 120v/15A circuit, split-system HPWH)
- Baseline volume (gallons), FHR, and UEF

³²¹ 2010 ACEEE Summer Study on Energy Efficiency in Buildings, LBNL, "Heat Pump Water Heaters and American Homes: A Good Fit?" p 9-74. <u>https://www.aceee.org/files/proceedings/2010/data/papers/2205.pdf</u>.

- New HPWH volume (gallons), FHR, and UEF
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	01/30/2015	TRM v2.1 update. No revision.
v3.0	04/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v4.0	10/10/2016	TRM v4.0 update. Consolidated table formats.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. Implementation of new baseline and update to the efficiency of qualifying HPWHs.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Added new construction eligibility
v9.0	10/2021	TRM v9.0 update. Clarified baseline condition. Confirmed ENERGY STAR-qualified product listing still does not contain a significant number of products with low or very small usage patterns.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Version 4.0 Requirements. Updated savings methodology to algorithm approach. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.

Table 288. HPWHs—Revision History

2.4.3 ENERGY STAR[®] Solar Water Heaters Measure Overview

TRM Measure ID: R-WH-SW Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves installing a new solar water heater in place of an electric storage water heater. Solar water heating deemed savings values are calculated based on the Solar Rating and Certification Corporation's (SRCC) test for solar water heaters (test OG-300).

Eligibility Criteria

These deemed savings are for solar water heaters installed as a replace-on-burnout measure or as an early retirement measure in existing homes and in new construction homes. However, savings are calculated under the assumption of replace-on-burnout.

Baseline Condition

The baseline condition is an electric storage water heater with baseline efficiency uniform energy factor (UEF) determined by tank size and first hour rating (FHR), a proxy for draw pattern. This baseline is specified according to the current federal energy efficiency standards for residential water heaters with tank sizes from 20 to 120 gallons, effective April 16, 2015, as published in 10 CFR Part 430.32 of the Federal Register (see Table 279).³²²

This baseline applies to replace-on-burnout, and new construction applications. No additional savings are awarded for early retirement. Early retirement projects should calculate savings using an assumed replace-on-burnout baseline. However, the Department of Energy (DOE) issued a notice of proposed rulemaking for consumer water heaters on July 27, 2023.³²³ The TRM will add an early retirement baseline after the effective date for the new standard.

³²² 10 CFR Part 430.32 Energy and water conservation standards and their effective dates. Available online: <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=32</u>.

³²³ Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters. <u>https://www.regulations.gov/document/EERE-2017-BT-STD-0019-0063</u>.

Rated storage volume	Draw pattern	FHR ^{324,325}	UEF ³²⁶
≥ 20 gal and ≤ 55 gal	Very small usage	0 ≤ FHR < 18	0.8808 - (0.0008 × Vr)
	Low usage	18 ≤ FHR < 51	0.9254 - (0.0003 × Vr)
	Medium usage	51 ≤ FHR < 75	0.9307 - (0.0002 × V _r)
	High usage	75 ≤ FHR	0.9349 - (0.0001 × Vr)
> 55 gal and ≤ 120 gal	Very small usage	0 ≤ FHR < 18	1.9236 - (0.0011 × V _r)
	Low usage	18 ≤ FHR < 51	2.0440 - (0.0011 × V _r)
	Medium usage	51 ≤ FHR < 75	2.1171 - (0.0011 × Vr)
	High usage	75 ≤ FHR	2.2418 - (0.0011 × Vr)

Table 289. Solar DHW—Federal Standard for Residential Electric Storage Water Heaters

High-Efficiency Condition

Eligible equipment must be compliant with the current ENERGY STAR v5.0 specification, effective April 18, 2023. Qualified products must have a solar uniform energy factor (SUEF) greater than or equal to 3.0, and warranties of \geq 10 years on collectors, \geq 6 years on sealed systems, \geq 2 years on controls, and \geq 1 year on piping and parts.³²⁷ A complete list of certified ENERGY STAR solar water heaters can be accessed via the ENERGY STAR program website.³²⁸

Solar water heaters must be certified according to the current SRCC OG-300 standard based on tank size and final SUEF.³²⁹

³²⁴ "The Revised Method of Test for Residential Water Heating and Its Impact on Incentive Programs" presentation, Glanville, Paul. ACEEE Hot Water Forum. February 24, 2015. https://aceee.org/sites/default/files/pdf/conferences/hwf/2015/6B-Glanville.pdf.

³²⁵ Assume FHR equal to that of installed water heater.

³²⁶ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.17.

³²⁷ ENERGY STAR Requirements (effective January 5th, 2022, released March 29, 2022). <u>https://www.energystar.gov/products/water_heaters/residential_water_heaters_key_product_criteria</u>.

³²⁸ ENERGY STAR-certified water heaters qualified product listing. <u>https://www.energystar.gov/productfinder/product/certified-water-heaters/?formId=bb099b76-3da7-49bf-a746-fbde4d076d0d&scrollTo=422&search_text=&type_filter=Solar+with+Electric+Backup&fuel_filter=&bran_d_name_isopen=0&input_rate_thousand_btu_per_hour_isopen=0&markets_filter=United+States&zip_code_filter=&product_types=Select+a+Product+Category&sort_by=brand_name&sort_direction=asc¤tZipCode=78701&page_number=0&lastpage=0.0</u>

³²⁹ ENERGY STAR certification for residential water heaters. <u>https://solar-rating.org/programs/estar/</u>.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Solar water heating savings values are on a per-unit basis. Variables used to compute deemed savings include tank volume and installed unit SUEF as rated in the SRCC "Summary of SRCC Certified Solar Collector and Water Heating System Ratings." The SUEF is determined under SRCC's Operating Guideline 300, "Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems" and was developed as a means to compare solar water heating systems with conventional water heating systems rated with an UEF and listed in the Gas Appliance Manufacturers Association Directory of Certified Water Heating Products.

Both UEF and SUEF are based on the same environmental and hot water use conditions used in the DOE Test Procedures for Water Heaters. The only significant difference is that the DOE test does not specify solar radiation. So SRCC uses a 1500 Btu/sq. ft./day solar radiation profile—a value typical of Sunbelt states (note - the annual average solar radiation for Dallas is 1533 Btu/sq. ft./day. Information on the SRCC can be found at <u>http://www.solar-rating.org/</u>.

All deemed savings values are calculated using the following standard algorithms for water heating. These algorithms assume a replace-on-burnout or new construction scenario but may be used to award savings for early retirement projects.

Energy Savings Algorithm

$$Energy \ Savings \ [\Delta kWh] = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,annual}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{SUEF_{post}}\right)}{3,412}$$
Equation 74

Where:

ρ	=	Water density [lbs/gal] = 8.33
$C_{ ho}$	=	Specific heat of water $[Btu/lb\cdot \circ F] = 1$
GPY	=	Estimated annual hot water use in gallons/year, specified by number of bedrooms in the home (see Table 290). For midstream/upstream applications, the number of bedrooms is assumed to be 3. ³³⁰
Tsetpoint	=	Water heater setpoint temperature $[°F]^{331} = 120$

³³⁰ Weighted average of number of bedrooms in West South-Central Region. 2020 RECS Survey Data – Table HC2.8 Structural and geographic characteristics of homes in the South and West regions, 2020. <u>https://www.eia.gov/consumption/residential/data/2020/</u>.

³³¹ 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.

$T_{supply,annual}$	=	Average annual supply water temperature [°F] (see Table 291)
UEF _{pre}	=	Baseline uniform energy factor (calculate per Table 289) ³³²
SUEF _{post}	=	Solar uniform energy factor of new water heater
3,412	=	Constant to convert from Btu to kWh

Table 290. Solar	DHW-Water	Heater Consump	otion ((Gal/Year)	333
				`	

	Number of bedrooms			
Climate zone	1	2	3	4
Zone 1: Amarillo	15,476	20,171	24,866	29,561
Zone 2: Dallas	14,778	19,244	23,710	28,177
Zone 3: Houston	14,492	18,864	23,236	27,608
Zone 4: Corpus Christi	14,213	18,494	22,775	27,056
Zone 5: El Paso	14,905	19,412	23,920	28,427

Table 291. Solar DHW—Water Mains Temperature (°F)³³⁴

		T _{supply,seasonal}		
Climate zone	T _{supply,annual}	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Demand Savings Algorithm

$$= \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply, seasonal}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{SUEF_{post}}\right)}{365 \times 3,412} \times CF_{S/W}$$

```
Equation 75
```

³³² Note that for efficient water heater installations in new construction homes, the baseline uniform energy factor is the efficiency of the electric storage water heater that would otherwise have been installed, according to appropriate design documentation.

³³³ Building America Research Benchmark Definition. December 2009, p 13. Available online: http://www.nrel.gov/docs/fy10osti/47246.pdf.

³³⁴ Based on TMY3 dataset. TMY data is available through the National Solar Radiation Database (NSRDB) Data Viewer, <u>https://maps.nrel.gov/nsrdb-viewer/</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatory-filings/deemed-savings</u>.

Where:

T _{supply,seasonal}	=	Seasonal supply water temperature [°F] (see Table 291)
CF _{S/W}	=	Summer/winter peak coincidence factor (see Table 292)

Climate zone	Summer	Winter
Zone 1: Amarillo	0.042	0.067
Zone 2: Dallas	0.039	0.068
Zone 3: Houston	0.041	0.070
Zone 4: Corpus Christi	0.041	0.065
Zone 5: El Paso	0.036	0.067

Table 292. Solar DHW—Coincidence Factors³³⁵

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 15 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-SWH.³³⁶

³³⁵ Probability weighted peak load factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from Building America Performance Analysis Procedures for Existing Homes, page 18, Figure 4: Combined Domestic Hot Water Use Profile. <u>https://www.nrel.gov/docs/fy06osti/38238.pdf</u>.

³³⁶ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of bedrooms (not required for upstream/midstream program delivery)
- Solar DHW quantity
- Manufacturer and model number of new solar water heater
- Baseline volume (gallons), FHR, and UEF
- New solar water heater volume (gallons), FHR, and SUEF
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 62. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 27903. Order Adopting New §25.184 as Approved at the August 21, 2003, Open Meeting and Submitted to the Secretary of State. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v4.0	10/10/2016	TRM v4.0 update. No revision
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.

Table 293. Solar DHW—Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated algorithms and coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Version 4.0 Requirements. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.

2.4.4 Water Heater Tank Insulation Measure Overview

TRM Measure ID: R-WH-TI Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure requires the installation of tank wrap insulation on an uninsulated water heater tank.

Eligibility Criteria

Water heater tank insulation is a residential retrofit measure. New construction and water heater replacements are not eligible for this measure because they must meet current code requirements. Tank insulation must be installed on an uninsulated electric resistance water heater.

To be eligible for this measure, water heaters must have been installed prior to April 16, 2015. Water heaters manufactured after this date are compliant with the current federal standard³³⁷ and are built with a thicker tank with a higher baseline R-value. Modern water heaters are expected to be rated at a minimum of R-24.^{338,339}

³³⁷ "Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters". Effective 6/15/2010 with compliance starting 5/16/2015. <u>https://www.federalregister.gov/documents/2010/04/16/2010-7611/energy-conservation-program-energy-conservation-standards-for-residential-water-heatersdirect.</u>

³³⁸ "Do-It-Yourself Savings Project: Insulate Water Heater Tank," U.S. Department of Energy. <u>https://www.energy.gov/energysaver/do-it-yourself-savings-project-insulate-water-heater-tank</u>.

³³⁹ "Water Heating Products," Air-Conditioning, Heating, and Refrigeration Institute (AHRI). <u>https://www.ahrinet.org/scholarships-education/education/homeowners/save-energy/water-heating-products</u>.

Baseline Condition

The baseline is assumed to be a typical electric water heater with no insulation. The baseline tank is assumed to be one to two inches thick with an assumed R-value of approximately R-8 per inch.³⁴⁰

High-Efficiency Condition

The high-efficiency condition is a water heater tank wrap or insulated blanket with an R-value of at least 8.

The manufacturer's instructions on the water heater jacket and the water heater itself should be followed. Thermostat and heating element access panels must be left uncovered.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Hot water tank insulation energy savings are calculated using the following formula:

Energy Savings
$$[\Delta kWh] = (U_{pre} - U_{post}) \times A \times (T_{tank} - T_{ambient,annual}) \times (\frac{1}{RE}) \times \frac{hours}{3,412}$$

Equation 76

Where:

R _{pre}	=	Uninsulated tank R-value = 12 [sq. ft. °F hr/Btu] ³⁴¹
R _{post}	=	Tank insulation R-value = 12 + 8 = 20 = [sq. ft. °F hr/Btu]
U _{pre}	=	1 / R _{pre} = 1 / 12 = 0.083 [Btu/hr sq. ft. °F]
U _{post}	=	$1 / R_{post} = 1 / 20 = 0.05 $ [Btu/hr sq. ft. °F]
A	=	Tank surface area insulated in square feet (πDL) with L (length) and D (tank diameter) in feet; if the tank area is not known, use Table 294

³⁴⁰ "Energy Conservation Program for Consumer Products: Energy Conservation Standards for Water Heaters", Section V. Analytical Results and Conclusion, subsection C. Lessening of Utility or Performance of Products. Effective 1/20/2004. <u>https://www.federalregister.gov/documents/2001/01/17/01-1081/energy-conservation-program-forconsumer-products-energy-conservation-standards-for-water-heaters</u>.

³⁴¹ Baseline storage tank assembly is assumed to have thermal performance of R12, assuming an average tank thickness of 1-2 inches (average 1.5) and an approximate R-value of R-8 per inch.

Volume (gal)	A (sq. ft.)
30	17.45
40	21.81
50	22.63
60	26.94
80	30.36
120	38.73

T _{tank}	=	Average tank water temperature [°F]; default = $120^{\circ}F^{343}$
Tambient,annual	=	Average annual ambient temperature [°F] (see Table 295)
RE	=	Recovery efficiency; default = 0.98 for electric resistance water heaters ³⁴⁴
hours	=	8,760 hours per year
3,412	=	Constant to convert from Btu to kWh

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = (U_{pre} - U_{post}) \times A \times (T_{tank} - T_{ambient, seasonal}) \times \frac{1}{RE} \times \frac{CF_{S/W}}{3,412}$$

Equation 77

Where:

$$T_{ambient,seasonal} =$$
 Seasonal ambient temperature [°F] (see Table 295)
 $CF_{S/W} =$ Seasonal peak coincidence factor³⁴⁵ = 1

³⁴² Tank area was obtained from a survey of electric water heater manufacturer data from A.O. Smith and Whirlpool conducted in 2013. Dimensions for each tank size were collected and averaged to determine typical square footage of each size water heater.

³⁴³ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), supports a default value of 120°F.

³⁴⁴ Default based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://www.ahrinet.org</u>.

³⁴⁵ Coincidence factor of 1 assumes that a constant tank temperature is maintained across all hours of the year.

	Wa unc	ter heater loc onditioned sp	ation: bace ³⁴⁶	Water heater location: conditioned space ³⁴⁷			
		Peak se	asonal		Peak se	easonal	
Climate zone	Annual	Summer	Winter	Annual	Summer	Winter	
Zone 1: Amarillo	65.5	106.0	32.0	71.8	73.9	69.6	
Zone 2: Dallas	73.1	108.1	42.0				
Zone 3: Houston	76.3	108.2	46.0				
Zone 4: Corpus Christi	78.4	103.0	55.0				
Zone 5: El Paso	71.8	108.0	41.1				

Table 295. DHW Tank Insulation—Ambient Temperature (°F)

Deemed Energy Savings Tables

Table 296. DHW Tank Insulation—Energy Savings

		Conditioned				
Tank volume	Amarillo	Dallas	Houston	Corpus Christi	El Paso	All zones
30	83	71	67	63	73	73
40	104	89	83	79	92	92
50	108	93	86	82	95	95
60	128	110	103	98	113	113
80	144	124	116	110	128	128
120	184	159	148	141	163	163

³⁴⁶ Average ambient temperatures for unconditioned space were taken from TMY3 data, with a 7°F increase in winter and an 11°F increase in summer based on ASHRAE 152 Heating System and Cooling System Location Temperatures (Garage).

³⁴⁷ Average ambient temperatures for conditioned space were taken from the US Energy Information Administration Residential Energy Consumption Survey (RECS), tables hc7.9 and hc6.8. Summer and winter indoor temperature averages are weighted by the number of homes. Annual temperature is the average of summer and winter weighted by number of days.

Deemed Summer Demand Savings Tables

		Conditioned				
Tank volume	Amarillo	Dallas	Houston	Corpus Christi	El Paso	All zones
30	0.0024	0.0021	0.0021	0.0030	0.0021	0.0080
40	0.0030	0.0026	0.0026	0.0037	0.0026	0.0100
50	0.0032	0.0027	0.0027	0.0038	0.0027	0.0104
60	0.0038	0.0032	0.0032	0.0046	0.0032	0.0124
80	0.0042	0.0036	0.0036	0.0051	0.0036	0.0140
120	0.0054	0.0046	0.0046	0.0066	0.0046	0.0178

Table 297. DHW Tank Insulation—Energy Savings

Deemed Winter Demand Savings Tables

Table 298. DHW Tank Insulation—Energy Savings

		Conditioned				
Tank volume	Amarillo	Dallas	Houston	Corpus Christi	El Paso	All zones
30	0.0153	0.0136	0.0129	0.0113	0.0137	0.0088
40	0.0191	0.0170	0.0161	0.0141	0.0172	0.0110
50	0.0199	0.0176	0.0167	0.0147	0.0178	0.0114
60	0.0236	0.0209	0.0199	0.0175	0.0212	0.0135
80	0.0266	0.0236	0.0224	0.0197	0.0239	0.0153
120	0.0340	0.0301	0.0286	0.0251	0.0305	0.0195

Claimed Peak Demand Savings

Refer to Volume 1, Section 4.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 7 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-TankIns-Elec.³⁴⁸

³⁴⁸ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Water heater location (conditioned, unconditioned)
- Tank volume (30, 40, 50, 60, 80, 120)
- The R-value of the installed tank insulation
- Water heater model number and manufacture date

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. Supplemented reference for water heater setpoint temperature.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. No revision.

Table 299. DHW Tank Insulation—Revision History

TRM version	Date	Description of change
v8.0	10/2020	TRM v8.0 update. Updated ambient temperatures.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. Clarified baseline and added deemed savings. Updated documentation requirements.

2.4.5 Water Heater Pipe Insulation Measure Overview

TRM Measure ID: R-WH-PI Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure requires the installation of pipe insulation on uninsulated water heater pipes that are served by an electric water heater.

Eligibility Criteria

Water heaters plumbed with heat traps are not eligible to receive incentives for this measure. It is recommended that the installer (or contractor) checks to see if the water heater heat trap works properly before declaring the water heater ineligible.

Water heater pipe insulation is a residential retrofit measure. New construction and retrofits involving the installation of new water heaters are not eligible for this measure, because they must meet current code requirements. To use these deemed savings, the fuel type of the water heater must be electricity.

Baseline Condition

The baseline is assumed to be a typical electric water heater with no heat traps and no insulation on water heater pipes.

High-Efficiency Condition

The efficiency standard requires an insulation thickness R-3. The International Residential Code (IRC) 2018 section N1103.4: Mechanical system piping insulation requires R-3 insulation.

All visible hot water piping must be insulated. Savings are based on a maximum allowable insulation length of 6 feet of piping.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Hot water pipe insulation energy savings are calculated using the following formula:

Energy Savings
$$[\Delta kWh] = (U_{pre} - U_{post}) \times A \times (T_{pipe} - T_{ambient,avg}) \times (\frac{1}{RE}) \times \frac{hours}{3,412}$$

Equation 78

Where:

U _{pre}	=	$\frac{1}{2.03} = 0.49 \frac{Btu}{hr} \cdot sq. ft. \circ F^{349}$
U _{post}	=	$\frac{1}{2.03+R_{Insulation}}Btu/hr \cdot sq. ft. ^{\circ}F$
RInsulation	=	R-value of installed insulation
A	=	Pipe surface area insulated in square feet (π DL) with L (length) and D (pipe diameter) in feet. The maximum length allowable for insulation is 6 feet; if the pipe area is unknown, use the following table.

Table 300. DHW Pipe Insulation—Estimated Pipe Surface Area

Pipe diameter (inches)	Pipe surface area (square feet) ³⁵⁰
0.5	0.16 x required input "Pipe Length insulated (feet)"
0.75	0.23 x required input "Pipe Length insulated (feet)"
1.0	0.29 x required input "Pipe Length insulated (feet)"

 ³⁴⁹ 2.03 is the R-value representing the film coefficients between water and the inside of the pipe, and between the surface and air. Mark's Standard Handbook for Mechanical Engineers, 8th edition.
 ³⁵⁰ Factors used in the calculation for pipe area were determined by using the outside diameter of the pipe in inches, converting it to feet, and multiplying by π as shown below.

Nominal diameter (inches)	Outside diameter (inches)	Factor to calculate pipe area
0.5	0.625	0.16
0.75	0.875	0.23
1.0	1.125	0.29

T _{pipe}	=	Average pipe water temperature [°F]; default ³⁵¹ = 120
T _{ambient,avg}	=	Average annual ambient temperature [°F] (see Table 301)
RE	=	Recovery efficiency (or in the case of heat pump water heaters, COP). If unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters. ³⁵²
hours	=	8,760 hours per year

Demand Savings Algorithms

Peak Demand Savings $[\Delta kW] = (U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambient, seasonal}) \times (\frac{1}{RE}) \times \frac{CF_{S/W}}{3,412}$ Equation 79

Where:

T _{ambient} ,seasonal	=	Seasonal ambient temperature [°F] (see Table 301)
CF _{S/W}	=	Seasonal peak coincidence factor ^{353} = 1

Table 301. DHW Pipe Insulation—Ambient Temperature (°F)

	Wate unco	er heater loc onditioned sp	ation: bace ³⁵⁴	Water heater location: conditioned space ³⁵⁵		
		Peak se	easonal		Peak se	easonal
Climate zone	Annual	Summer	Winter	Annual	Summer	Winter
Zone 1: Amarillo	65.5	106.0	32.0	71.8	73.9	69.6
Zone 2: Dallas	73.1	108.1	42.0			
Zone 3: Houston	76.3	108.2	46.0			

³⁵¹ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 102. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

³⁵² Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://www.ahrinet.org</u>.

³⁵³ Coincidence factor of 1 assumes that a constant tank and near tank piping temperature is maintained across all hours of the year.

³⁵⁴ Average ambient temperatures for unconditioned space were taken from TMY3 data, with a 7°F increase in winter and an 11°F increase in summer based on ASHRAE 152 Heating System and Cooling System Location Temperatures (Garage).

³⁵⁵ Average ambient temperatures for conditioned space were taken from the US Energy Information Administration Residential Energy Consumption Survey (RECS), tables hc7.9 and hc6.8. Summer and winter indoor temperature averages are weighted by the number of homes. Annual temperature is the average of summer and winter weighted by number of days.

	Water heater location: unconditioned space ³⁵⁴			Water heater location: conditioned space ³⁵⁵		
		Peak se	easonal		Peak se	easonal
Climate zone	Annual	Summer	Winter	Annual	Summer	Winter
Zone 4: Corpus Christi	78.4	103	55.0	71.8	73.9	69.6
Zone 5: El Paso	71.8	108	41.1			

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 13 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-PipeIns-Elec.³⁵⁶

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Water heater location (conditioned, unconditioned)
- The R-value of the installed insulation

³⁵⁶ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

- Recovery efficiency (RE) or COP, if available
- Pipe length insulated (feet)
- The pipe surface area insulated in square feet (at least the pipe diameter in inches)

References and Efficiency Standards

Petitions and Rulings

Document Revision History

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. Supplemented reference for water heater setpoint temperature.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated ambient temperatures.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 302. DHW Pipe Insulation—Revision History

2.4.6 Faucet Aerators Measure Overview

TRM Measure ID: R-WH-FA Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves installing aerators on kitchen and bathroom water faucets as a retrofit measure.

Eligibility Criteria

The savings values are per faucet aerator installed. It is not a requirement that all faucets in a home be treated for the deemed savings to be applicable.

These deemed savings are for residential, retrofit or new construction, and installations of kitchen and bathroom faucet aerators. To be awarded these deemed savings, the fuel type of the water heater must be electricity.

Baseline Condition

The 2.2 gallon per minute (GPM) baseline faucet flow rate is based on the Department of Energy (DOE) maximum flow rate standard.³⁵⁷ The deemed savings assume that the existing faucet aerators have a minimum flow rate of 2.2 GPM. The US EPA WaterSense specification for faucet aerators is 1.5 GPM.³⁵⁸

High-Efficiency Condition

Aerators that have been defaced to make the flow rating illegible are not eligible for replacement. For direct install programs, all aerators removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

³⁵⁷ DOE maximum flow rate for faucet aerators.

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=40. ³⁵⁸ https://www.epa.gov/watersense/bathroom-faucets.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

The deemed savings, for any faucet aerator change case using aerators with flow rates of 1.5 GPM or lower, are calculated as follows:

$$= \frac{\rho \times C_P \times (GPM_{Base} - GPM_{Low}) \times N \times t \times 365 \times (T_{faucet,avg} - T_{supply,avg})}{FPH \times RE \times 3,412}$$

Equation 80

Where:

ρ	=	Water density [lbs/gal] = 8.33
$C_{ ho}$	=	Specific heat of water [Btu/lb°F] = 1
GPM _{Base}	=	Average baseline flow rate of aerator = 2.2 gallons per minute
<i>GPM</i> _{Low}	=	Post-installation flow rate of aerator, typically 1.5, 1.0, or 0.5 gallons per minute; if unknown, assume 1.5 gallons per minute
Ν	=	Average number of persons per household = 2.83 persons ³⁵⁹
t	=	Average time in minutes of hot water usage per person per day; default = $2.34 \text{ min/person/day}^{360}$
T _{faucet,avg}	=	Average faucet temperature $[°F]^{361} = 88$
T _{supply,avg}	=	Average annual supply water temperature [°F] (see Table 303)
FPH	=	Average number of faucets per household = 3.87 faucets ³⁶²

³⁵⁹ Occupants per home for Texas from US Census Bureau, "Persons Per Household, 2016-2020". <u>https://www.census.gov/quickfacts/fact/table/TX,US/PST045221</u>.

³⁶⁰ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group. Derived by taking weighted average of average minutes per person per day specified for kitchens (4.5) and bathrooms (1.6) assuming 1 kitchen aerator and 2.93 bathrooms.

³⁶¹ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group. Derived by taking weighted average of average temperature for kitchens (93°F) and bathrooms (86°F) assuming 1 kitchen aerator and 2.93 bathrooms.

Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

³⁶² Faucets per home assumed to be equal to one per kitchen and each half-bath plus 1.5 per each full bathroom per home. Bathroom counts extracted from the 2015 Residential Energy Consumption Survey (RECS), Table HC2.8 Structural and Geographic Characteristics of Homes in West South-Central Region.

RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP). If unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters. ³⁶³
3,412	=	Constant to convert from Btu to kWh

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year, with 365 canceling from the savings algorithm numerator and denominator.

Peak Demand Savings per aerator $[\Delta kW]$

$$= \frac{\rho \times C_P \times (GPM_{Base} - GPM_{Low}) \times N \times t \times (T_{faucet,avg} - T_{supply,seasonal})}{FPH \times RE \times 3,412} \times CF_{S/W}$$

Equation 81

Where:

 $T_{supply,seasonal} =$ Seasonal supply water temperature [°F] (Table 303) $CF_{S/W} =$ Seasonal peak coincidence factor (Table 304)

		T _{supply,}	seasonal
Climate zone	T _{supply,avg}	Summer	Winter
Zone 1: Amarillo	62.9	73.8	53.7
Zone 2: Dallas	71.8	84.0	60.6
Zone 3: Houston	74.7	84.5	65.5
Zone 4: Corpus Christi	77.2	86.1	68.5
Zone 5: El Paso	70.4	81.5	60.4

Table 303. Faucet Aerators—Water Mains Temperature (°F)³⁶⁴

³⁶³ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, <u>https://www.ahridirectory.org/</u>.

³⁶⁴ Based on typical meteorological year (TMY) dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

Climate zone	Summer	Winter
Zone 1: Amarillo	0.039	0.073
Zone 2: Dallas	0.035	0.075
Zone 3: Houston	0.038	0.080
Zone 4: Corpus Christi	0.038	0.068
Zone 5: El Paso	0.028	0.069

Table 304. Faucet Aerators—Coincidence Factors

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

³⁶⁵ Building America performance analysis procedures for existing homes.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Aertr.³⁶⁶

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Recovery Efficiency (RE) or COP, if available
- Flow rate in gallons per minute (GPM) of faucet installed
- Water heater type (e.g., heat pump, electric resistance)

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

³⁶⁶ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	10/30/2015	TRM v3.1 update. Supplemented reference for water heater setpoint temperature.
v4.0	10/10/2016	TRM v4.0 update. Updated methodology to calculate energy and demand savings.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 305. Faucet Aerators—Revision History

2.4.7 Low-Flow Showerheads Measure Overview

TRM Measure ID: R-WH-SH Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of removing existing showerheads and installing low-flow showerheads in residences.

Eligibility Criteria

The incentive is for replacement of an existing showerhead with a new showerhead rated at or below 2.0gallons per minute (GPM). The only showerheads eligible for installation are those that are not easily modified to increase the flow rate.

These deemed savings are for showerheads installed as a retrofit or new construction measure. To be awarded these deemed savings, the fuel type of the water heater must be electricity.

Baseline Condition

Federal standards set a maximum flow rate of 2.5 GPM,³⁶⁷ while the US Environmental Protection Agency (EPA) WaterSense Program has implemented efficiency standards for showerheads requiring a maximum flow rate of 2.0 GPM.³⁶⁸

High-Efficiency Condition

In addition to meeting the baseline requirements above, existing showerheads that have been defaced to make the flow rating illegible are not eligible for replacement. All showerheads removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

³⁶⁷ http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/37.

³⁶⁸ <u>http://www.epa.gov/watersense/products/showerheads.html</u>.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

Energy Savings per showerhead [
$$\Delta kWh$$
]
= $\frac{\rho \times C_P \times (GPM_{Base} - GPM_{Low}) \times N \times t \times 365 \times (T_{shower,avg} - T_{supply,avg})}{SPH \times RE \times 3,412}$

Equation 82

Where:

ρ	=	Water density [lbs/gal] = 8.33
C_p	=	Specific heat of water $[Btu/lb^{\circ}F] = 1$
GPM _{Base}	=	Average baseline flow rate of aerator = 2.5 gallons per minute
<i>GPM</i> _{Low}	=	Post-installation flow rate of aerator; if unknown, assume 2.0 gallons per minute
Ν	=	Average number of persons per household = 2.83 persons ³⁶⁹
t	=	Average time in minutes of hot water usage per person per day; $default = 7.8 min/person/day^{370}$
T _{shower,avg}	=	Average shower temperature [°F] ^{371} = 101
T _{supply,avg}	=	Average annual supply water temperature [°F] (see Table 306)
SPH	=	Average number of showerheads per household = 1.74 showerheads ³⁷²

³⁶⁹ Occupants per home for Texas from US Census Bureau, "Persons per household, 2016-2020". <u>https://www.census.gov/quickfacts/fact/table/TX,US/PST045221</u>.

³⁷⁰ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group.

³⁷¹ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group

³⁷² Showerheads per home assumed to be equal to the number of full bathrooms per home as specified in the 2009 Residential Energy Consumption Survey (RECS), Table HC2.10.

RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters ³⁷³
3,412	=	Constant to convert from Btu to kWh

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year, with 365 canceling from the savings algorithm numerator and denominator.

$$Demand Savings per showerhead [\Delta kWh] = \frac{\rho \times C_P \times (GPM_{Base} - GPM_{Low}) \times N \times t \times (T_{shower,avg} - T_{supply,seasonal})}{SPH \times RE \times 3,412} \times CF_{S/W}$$

Equation 83

Where:

 $T_{supply,seasonal} =$ Seasonal supply water temperature [°F] (see Table 306) $CF_{SW} =$ Seasonal peak coincidence factor (see Table 307)

Table 500. Low-1 low Showerneaus—water mains reinperature (1)

		T _{SupplyS}	easonal
Climate zone	T _{SupplyAverage}	Summer	Winter
Zone 1: Amarillo	62.9	73.8	53.7
Zone 2: Dallas	71.8	84.0	60.6
Zone 3: Houston	74.7	84.5	65.5
Zone 4: Corpus Christi	77.2	86.1	68.5
Zone 5: El Paso	70.4	81.5	60.4

³⁷³ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://cafs.ahrinet.org/gama_cafs/sdpsearch/search.jsp?table=CWH</u>.

³⁷⁴ Based on typical meteorological year (TMY) dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

Climate zone	Summer	Winter
Zone 1: Amarillo	0.039	0.073
Zone 2: Dallas	0.035	0.075
Zone 3: Houston	0.038	0.080
Zone 4: Corpus Christi	0.038	0.068
Zone 5: El Paso	0.028	0.069

Table 307. Low-Flow Showerheads—Coincidence Factors

Figure 5. Low-Flow Showerheads—Shower, Bath, and Sink Hot Water Use Profile³⁷⁵ Source: Building America Performance Analysis Procedures for Existing Homes.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

³⁷⁵ Building America performance analysis procedures for existing homes.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Shrhd.³⁷⁶

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Recovery efficiency (RE) or COP, if available
- Flow rate in gallons per minute (GPM) of showerhead installed
- Water heater type (e.g., heat pump, electric resistance)

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

³⁷⁶ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. Provided clarification that savings are to be awarded per showerhead. Supplemented reference for water heater setpoint temperature.
v4.0	10/10/2016	TRM v4.0 update. Updated methodology to calculate energy and demand savings.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Added new savings category and updated coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 308. Low-Flow Showerheads—Revision History

2.4.8 Showerhead Temperature Sensitive Restrictor Valves Measure Overview

TRM Measure ID: R-WH-SV Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily; manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of installing a temperature sensitive restrictor valve $(TSRV)^{377}$ between the existing shower arm and showerhead. The valve restricts hot water flow through the showerhead once the water reaches a set temperature (generally 95°F) to prevent water from going down the drain prior to the user entering the shower, thereby eliminating behavioral waste.

Eligibility Criteria

These deemed savings are for temperature sensitive restrictor valves installed in new construction or as a retrofit measure in residential applications. Buildings must have electrically-fueled hot water to be eligible for this measure.

Baseline Condition

The baseline condition is the residential shower arm and standard (2.5 GPM) showerhead without a temperature sensitive restrictor valve installed.

High-Efficiency Condition

The high-efficiency condition is a temperature sensitive restrictor valve installed on a residential shower arm and showerhead with either a standard (2.5 GPM) or low-flow (2.0, 1.75, or 1.5 GPM) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-flow Showerheads measure and claim additional savings as outlined in that measure.

³⁷⁷ A temperature sensitive restrictor valve is any device that uses water temperature to regulate water flow in showers.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Estimated Hot Water Usage Reduction

To determine gallons of behavioral waste (defined as hot water that goes down the drain before the user enters the shower) per year, the following formula was used:

Annual Showerhead Behavioral Waste =
$$SHFR \times BW \times n_S \times 365 \times \frac{n_0}{n_{SH}}$$

Equation 84

Where:

SHFR	=	Showerhead flow rate, gallons per minute [gpm] (see Table 309)
BW	=	Behavioral waste, minutes per shower (see Table 309)
ns	=	Number of showers per person per day (see Table 309)
365	=	Constant to convert days to years (see Table 309)
no	=	Number of occupants per home (see Table 309)
n sн	=	Number of showerheads per home (see Table 309)

Applying the formula to the values from Table 309 returns the following values for baseline behavioral waste in gallons per showerhead per year:

Showerhead (2.5 GPM):
$$2.5 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{1.72} = 713 \ gal$$

Showerhead (2.0 GPM): $2.0 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{1.72} = 570 \ gal$
Showerhead (1.75 GPM): $1.75 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{1.72} = 499 \ gal$
Showerhead (1.5 GPM): $1.5 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{1.72} = 428 \ gal$

Gallons of hot water saved per year can be found by multiplying the baseline behavioral waste gallons per year by the percent of hot water from Table 309.

Gallons of hot water saved per year = Annual Behavioral Waste \times HW%

Equation 85
Where:

HW% = Hot water percentage (see Table 309)
Gallons of hot water saved per year (2.5 GPM): 713 × 0.825 = 588 gal
Gallons of hot water saved per year (2.0 GPM): 570 × 0.825 = 470 gal
Gallons of hot water saved per year (1.75 GPM): 499 × 0.825 = 412 gal
Gallons of hot water saved per year (1.5 GPM): 428 × 0.825 = 353 gal

Table 309. Showerhead TSRVs—Hot Water Usage Reduction

Description	2.5 GPM	2.0 GPM	1.75 GPM	1.5 GPM
Average behavioral waste (minutes per shower)378				0.783
Showers/person/day ³⁷⁹				0.6
Occupants per home ³⁸⁰	2			2.83
Showerheads/home ³⁸¹				1.72
Behavioral waste/showerhead/year (gal)	713	570	499	428
Percent hot water ³⁸²		8	0-85%, or 82.	5% average
Hot water saved/year (gal)	588	470	412	353

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

Energy Savings per TSRV
$$[\Delta kWh] = \frac{\rho \times C_P \times V \times (T_{setpoint} - T_{supply,avg})}{RE \times 3,412}$$

Equation 86

³⁷⁸ "Disaggregating Residential Shower Warm-Up Waste", Sherman, Troy. August 2014. Derived by dividing average behavioral waste time (47 seconds) by 60 seconds.

³⁷⁹ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study". Prepared for Michigan Evaluation Working Group. June 2013.

³⁸⁰ Occupants per home for Texas from US Census Bureau, "Persons per household, 2016-2020". <u>https://www.census.gov/quickfacts/fact/table/TX,US/PST045221</u>.

³⁸¹ Showerheads per home assumed to be equal to the number of full bathrooms per home. Bathroom counts extracted from the 2015 Residential Energy Consumption Survey (RECS) Table HC2.8 Structural and geographic characteristics of homes in the West South-Central region. https://www.eia.gov/consumption/residential/data/2015/#structural.

³⁸² "Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV", Sherman, Troy. Evolve Technologies. December 15, 2015.

Where:

ρ	=	Water density [lbs/gal] = 8.33
$C_{ ho}$	=	Specific heat of water $[Btu/lb^{\circ}F] = 1$
V	=	Gallons of hot water saved per year per showerhead (see Table 309)
Tsetpoint	=	Water heater setpoint temperature [°F] ³⁸³ = 120
T _{supply,avg}	=	Average annual supply water temperature [°F] (see Table 310)
RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters
3,412	=	Constant to convert from Btu to kWh

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year.

$$Peak Demand Savings per TSRV [\Delta kW] = \frac{\rho \times C_P \times V \times (T_{setpoint} - T_{supply, seasonal})}{RE \times 3,412 \times 365} \times CF_{S/W}$$

Equation 87

Where:

 $T_{supply,seasonal} =$ Seasonal supply water temperature [°F] (see Table 310) $CF_{S/W} =$ Seasonal peak coincidence factor (see Table 311)

³⁸³ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

		T _{SupplyS}	easonal
Climate zone	T _{SupplyAverage}	Summer	Winter
Zone 1: Amarillo	62.9	73.8	53.7
Zone 2: Dallas	71.8	84.0	60.6
Zone 3: Houston	74.7	84.5	65.5
Zone 4: Corpus Christi	77.2	86.1	68.5
Zone 5: El Paso	70.4	81.5	60.4

Table 310. Showerhead TSRVs—Water Mains Temperature (°F)³⁸⁴

Table 311. Showerhead TSRVs—Coincidence Factors

Climate zone	Summer	Winter
Zone 1: Amarillo	0.039	0.073
Zone 2: Dallas	0.035	0.075
Zone 3: Houston	0.038	0.080
Zone 4: Corpus Christi	0.038	0.068
Zone 5: El Paso	0.028	0.069

Source: Building America Performance Analysis Procedures for Existing Homes.

³⁸⁵ Building America performance analysis procedures for existing homes.

³⁸⁴ Based on typical meteorological year (TMY) dataset for TMY3 available through the National Solar Radiation Database (NSRDB) Data Viewer. https://nsrdb.nrel.gov/data-viewer. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatory-filings/deemed-savings</u>.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Shrhd.³⁸⁶

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- DHW recovery efficiency (RE) or COP, if available
- Flow rate in gallons per minute (GPM) of showerhead installed
- Water heater type (heat pump, electric resistance)

References and Efficiency Standards

Petitions and Rulings

Not applicable.

³⁸⁶ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 origin.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference and restricted measure to electric DHW.
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 312. Showerhead TSRVs—Revision History

2.4.9 Tub Spout and Showerhead Temperature Sensitive Restrictor Valves Measure Overview

TRM Measure ID: R-WH-TV
Market Sector: Residential
Measure Category: Water heating
Applicable Building Types: Single-family, multifamily, manufactured
Fuels Affected: Electricity
Decision/Action Type(s): Retrofit, new construction
Program Delivery Type(s): Prescriptive
Deemed Savings Type: Deemed savings calculation
Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of replacing existing tub spouts and showerheads with an automatically diverting tub spout and showerhead system with a temperature sensitive restrictor valve (TSRV) ³⁸⁷ between the existing shower arm and showerhead. The tub spout will contain temperature sensitive restrictor technology that will cause the tub spout to automatically engage the anti-leak diverter once the water reaches a set temperature (generally 95°F). The water will divert to a showerhead with a normally closed valve that will prevent the hot water from going down the drain prior to the user entering the shower, thereby eliminating behavioral waste and tub spout leakage waste.

Eligibility Criteria

These deemed savings are for tub spout and showerhead systems with temperature sensitive restrictor technology installed in new construction or as a retrofit measure in existing homes. Buildings must have electrically fueled hot water to be eligible for this measure.

Baseline Condition

The baseline condition is the residential tub spout with a standard diverter and a standard (2.5 gpm) showerhead.

³⁸⁷ A temperature sensitive restrictor valve is any device that uses water temperature to regulate water flow in showers.

High-Efficiency Condition

The high-efficiency condition is an anti-leak, automatically diverting tub spout system with temperature sensitive restrictor technology installed on a residential shower arm and showerhead with a standard (2.5 GPM) or low-flow (2.0, 1.75, or 1.5 GPM) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-flow Showerheads measure and claim additional savings as outlined in that measure.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Estimated Hot Water Usage Reduction

This system provides savings in two parts: elimination of behavioral waste (hot water that goes down the drain prior to the user entering the shower) and elimination of tub spout diverter leakage.

Part 1: To determine baseline gallons of behavioral waste per year, the following formula was used:

Annual Showerhead Behavioral Waste =
$$\%WUE_{SH} \times SHFR \times BW \times n_S \times 365 \times \frac{n_O}{n_{SH}}$$

Equation 88

Annual Tub Spout Behavioral Waste =
$$\%WUE_{TS} \times TSFR \times BW \times n_S \times 365 \times \frac{n_0}{n_{SH}}$$

Equation 89

%WUE _{sн}	=	Showerhead percentage of warm-up events (see Table 313)
%WUE _{TS}	=	Tub spout percentage of warm-up events (see Table 313)
SHFR	=	Showerhead flow rate, gallons per minute [gpm] (see Table 313)
TSFR	=	Tub spout flow rate, gallons per minute [gpm] (see Table 313)
BW	=	Behavioral waste, minutes per shower (see Table 313)
ns	=	Number of showers per person per day (see Table 313)
365	=	Constant to convert days to years (see Table 313)
no	=	Number of occupants per home (see Table 313)
n _{sH}	=	Number of showerheads per home (see Table 313)

Applying the formula to the values from Table 313 returns the following values:

Showerhead (1.5 GPM):
$$0.6 \times \left(1.5 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.72}\right) = 257$$

Showerhead (1.75 GPM): $0.6 \times \left(1.75 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.72}\right) = 299$
Showerhead (2.0 GPM): $0.6 \times \left(2.0 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.72}\right) = 342$
Showerhead (2.5 GPM): $0.6 \times \left(2.5 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.72}\right) = 428$
Tub Spout (5.0 GPM): $0.4 \times \left(5.0 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.72}\right) = 570$

Part 2: To determine baseline gallons of diverter leakage per year, the following formula was used:

Annual Diverter Waste =
$$DLR \times t_S \times n_S \times 365 \frac{days}{year} \times \frac{n_0}{n_{SH}}$$

Equation 90

Where:

Applying the formula to the values from Table 313 returns the following values:

Diverter (0.8 GPM):
$$0.8 \times 7.8 \times 0.60 \times 365 \times \frac{2.86}{1.72} = 2,272$$

Part 3: To determine gallons of water saved per year can be found by multiplying the total waste by the percent of hot water from Table 313.

Gallons of hot water saved = $(SHBW + TSBW) \times HW\%_{SHTS} + DW \times HW\%_{D}$

Equation 91

SHBW	=	Showerhead behavioral waste [gal]
TSBW	=	Tub spout behavioral waste [gal]
DW	=	Diverter waste [gal]
HW% _{SH,TS}	=	Showerheads and tub spout hot water percentage (see Table 313)
HW% _D	=	Diverter hot water percentage (see Table 313)

Applying the formula to the values from Table 313 returns the following values:

Total Annual Waste (1.5 gpm): $(257 + 570) \times 0.825 + 2,272 \times 0.737 = 2,357$ Total Annual Waste (1.75 gpm): $(299 + 570) \times 0.825 + 2,272 \times 0.737 = 2,392$ Total Annual Waste (2.0 gpm): $(342 + 570) \times 0.825 + 2,272 \times 0.737 = 2,427$ Total Annual Waste (2.5 gpm): $(428 + 570) \times 0.825 + 2,272 \times 0.737 = 2,498$

	Part 1—Beha	vioral waste	Part 2—	
Description	SH Warm-up	TS Warm-up	Diverter leakage	Part 3— Total
Baseline showerhead flow rate (GPM)	1.5, 1.75, 2.0, or 2.5			_
Tub spout flow rate (GPM) ³⁸⁸	_	5.0		_
Percent of warm-up events389	60%	40%		_
Average behavioral waste (minutes per shower) ³⁹⁰		0.783		_
Average diverter leakage rate (GPM) ³⁹¹	_		0.80	_
Average shower time (minutes per shower) ³⁹²	_		7.8	_
Showers/person/day ³⁹³				0.60
Occupants/home ³⁹⁴				2.83
Showerheads/home ³⁹⁵				1.72
Gallons behavioral waste. per tub spout/showerhead per year (1.5 GPM)	257	570	2,272	3,099
Gallons behavioral waste per tub spout/showerhead per year (1.75 GPM)	299			3,142
Gallons behavioral waste per tub spout/showerhead per year (2.0 GPM)	342			3,185

Table 242	Tub Craut/C	howerhood T		Water Lloog	Deduction
Table STS.	. 1 up spout/s	nowernead i	SRVS-ROL	water Usage	Reduction

³⁸⁸ Assumption from (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

³⁸⁹ Percent of warm-up events from (Sherman 2014) Disaggregating Residential Shower Warm-Up Waste (Appendix B, Question 8).

³⁹⁰ Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

³⁹¹ Average diverter leak rate from (Taitem 2011) Taitem Tech Tip – Leaking Shower Diverters.

³⁹² Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study". Prepared for Michigan Evaluation Working Group.

³⁹³ Derivation of value for showers per person per day defined in the Low Flow Showerhead measure.

³⁹⁴ Occupants per home for Texas from US Census Bureau, Texas, "Persons per household, 2016-2020." https://www.census.gov/quickfacts/fact/table/TX,US/PST045221.

³⁹⁵ Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2015 RECS, Table HC2.8. <u>https://www.eia.gov/consumption/residential/data/2015/#structural</u>.

	Part 1—Beha	vioral waste	Part 2—	
Description	SH Warm-up	TS Warm-up	Diverter leakage	Part 3— Total
Gallons behavioral waste per tub spout/showerhead per year (2.5 GPM)	428			3,270
Percentage hot water ³⁹⁶	80-85%, or 82	.5% average	73.7%	_
Gallons hot water saved per year (1.5 GPM)			_	2,357
Gallons hot water saved per year (1.75 GPM)			_	2,392
Gallons hot water saved per year (2.0 GPM)			-	2,427
Gallons hot water saved per year (2.5 GPM)			_	2,498

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

Energy Savings per TSRV
$$[\Delta kWh] = \frac{\rho \times C_P \times V \times (T_{setpoint} - T_{supply,avg})}{RE \times 3,412}$$

Equation 92

ρ	=	Water density [lbs/gal] = 8.33
$C_{ ho}$	=	Specific heat of water [Btu/lb°F] = 1
V	=	Gallons of hot water saved per year per showerhead (see Table 313)
T _{setpoint}	=	Water heater setpoint temperature 397 [°F] = 120
T _{supply,avg}	=	Average annual supply water temperature [°F] (see Table 314)
RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters
3,412	=	Constant to convert from Btu to kWh

³⁹⁶ Average percentage hot water for warm up events from (Lutz 2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

³⁹⁷ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year.

$$Peak Demand Savings per TSRV [\Delta kW] = \frac{\rho \times C_P \times V \times (T_{setpoint} - T_{supply, seasonal})}{RE \times 3,412 \times 365} \times CF_{S/W}$$

Equation 93

Where:

T _{supply,seasonal}	=	Seasonal supply water temperature [°F] (see Table 314)
CF _{S/W}	=	Peak coincidence factor (see Table 315)

Table 314. Tub Spout/Showerhead TSRVs—Water Mains Temperature (°F)³⁹⁸

		T _{SupplySeasonal}		
Climate zone	T _{SupplyAverage}	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Table 315. Tub Spout/Showerhead TSRVs—Coincidence Factors

Climate zone	Summer	Winter
Zone 1: Amarillo	0.039	0.073
Zone 2: Dallas	0.035	0.075
Zone 3: Houston	0.038	0.080
Zone 4: Corpus Christi	0.038	0.068
Zone 5: El Paso	0.028	0.069

³⁹⁸ Based on typical meteorological year (TMY) dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

Source: Building America Performance Analysis Procedures for Existing Homes.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

³⁹⁹ Building America performance analysis procedures for existing homes.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Shrhd.⁴⁰⁰

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Flow rate in gallons per minute (GPM) of showerhead installed
- Water heater type (heat pump, electric resistance)
- DHW recovery efficiency (RE) or COP, if available

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 316. Tub Spout/Showerhead TSRVs—Revision History

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 origin.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference and restricted measure to electric DHW.
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.
v11.0	10/2023	TRM v11.0 update. No revision.

⁴⁰⁰ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

2.4.10 Water Heater Temperature Setback Measure Overview

TRM Measure ID: R-WH-TS Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure outlines the demand and energy savings yielded from reprogramming residential water heater thermostats with default settings of greater than 120°F to 120°F.

Eligibility Criteria

Electric storage water heaters with default temperature setpoints in excess of 120°F are eligible to claim savings from this measure.

Baseline Condition

The baseline condition is an electric storage water heater with a thermostat setting that is higher than 120°F.

High-Efficiency Condition

The efficient condition is an electric storage water heater with a thermostat setting reduced to 120°F.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Water heater temperature setback savings are calculated on a per-unit basis. Deemed savings variables include the tank surface area, the heat transfer coefficient for the tank, and hot water setpoint prior to adjustment.

Energy Savings Algorithm

Energy Savings
$$[\Delta kWh] = \frac{A \times U \times (T_{pre} - T_{post}) \times 8,760}{RE \times 3,412}$$

Equation 94

Where:

Α

= Tank surface area insulated in square feet (π DL) with L (length) and D (tank diameter) in feet; if the tank area is not known, use Table 317

Table 317. DHW Ter	nperature Setback-	-Estimated Tan	k Area ⁴⁰¹

Volume (gal)	A (sq. ft.)		
30	17.45		
40	21.81		
50	22.63		
60	26.94		
80	30.36		
120	38.73		

- U = Overall heat transfer coefficient for the tank⁴⁰² (Btu/Hr·°F·ft²)
- T_{pre} = Hot water setpoint prior to adjustment [°F]
- T_{post} = Water heater setpoint [°F]⁴⁰³ = 120
- 8,760 = Total hours per year
- RE = Recovery efficiency of electric hot water heater = 0.98^{404}
- 3,412 = Constant to convert from Btu to kWh

⁴⁰¹ Texas TRM Vol 2, 2.4.4 Water Heater Tank Insulation, Table 317.

⁴⁰² If unknown, assume R-5 (U = 1/5).

⁴⁰³ 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.

⁴⁰⁴ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://www.ahrinet.org</u>.

Summer Peak Demand Savings
$$[\Delta kW] = \frac{kWh_{savings}}{8,760} \times CF_S$$

Equation 95

Where:

$$CF_{S}$$
 = Summer peak coincidence factor = 1.0

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 2 years⁴⁰⁵.

⁴⁰⁵ 2022 Illinois Statewide Technical Reference Manual Version 10.0, Volume 3 – 5.4.6 Water Heater Temperature Setback. September 24, 2021.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- R-value or overall heat transfer coefficient of tank (1 / R-value)
- Tank surface area insulated in square feet (πDL) with L (length) and D (tank diameter) in feet; if unable to determine tank area, tank volume must be recorded
- Hot water setpoint prior to adjustment
- Photo of reprogrammed temperature setpoint or another pre-approved method of verification
- Water heater manufacture date

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 318. DHW Temperature Setback—Revision History

TRM version	Date	Description of change
v10.0	10/2022	TRM v10.0 origin.
v11.0	10/2023	TRM v11.0 update. No revision.

2.5 **RESIDENTIAL: APPLIANCES**

2.5.1 ENERGY STAR[®] Ceiling Fans Measure Overview

TRM Measure ID: R-AP-CF Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR ceiling fan and light kit. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

Savings values in this measure are based on indoor usage patterns and are not applicable to outdoor applications.

Baseline Condition

The baseline is a conventional non-ENERGY STAR labeled ceiling fan and light kit.

High-Efficiency Condition

The table below displays the ENERGY STAR Version 4.0 Requirements for eligible ceiling fans effective June 15, 2018.⁴⁰⁶ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

⁴⁰⁶ ENERGY STAR Ceiling Fan and Light Kits, Final Version 4.0 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Ceiling%20Fans%20and%20Ceiling%20Fans%20and%20Ceiling%20Fans%20Light%20Kits%20Version%204.0 Program%20Requirements 0 0.pdf.</u>

U				
Fan type	Description			
Ceiling fan	A non-portable device designed for home use that is suspended from the ceiling for circulating air via the rotation of fan blades; for which the lowest point on fan blades is greater than 10 inches from the ceiling.			
Hugger ceiling fan	A ceiling fan for which the lowest point on the fan blades is less than or equal to 10 inches from the ceiling. Hugger ceiling fans can be safely installed on low ceilings, and some are sold with ceiling fan light kits.			

Table 319. Ceiling Fans—Fan Definitions

Туре	Diameter (inches)	Minimum efficiency (cfm/W)	Minimum high speed airflow (cfm)
Ceiling fan	D <u><</u> 36	<u>></u> 0.72 x D + 41.93	<u>></u> 1,767
	36 < D < 78	<u>></u> 2.63 x D – 26.83	<u>></u> 250 x π x (D/24) ²
	D <u>></u> 78		<u>></u> 8,296
Hugger ceiling fan	D <u><</u> 36	<u>></u> 0.31 x D + 36.84	<u>></u> 1,414
	36 < D < 78	<u>></u> 1.75 x D – 15	<u>></u> 200 x π x (D/24) ²
	D <u>></u> 78		<u>></u> 6,637

Table 320. Ceiling Fans—Efficiency Requirements

Table 321. Ceiling Fans—Light Kit Efficacy Requirements

Туре	Minimum efficacy (lumens/W)	Minimum light output (lumens)
Shipped with ENERGY STAR certified light bulbs	65.0	_
Separable light source	65.0	800
Integrated light source	70.0	

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings were calculated using the ENERGY STAR Ceiling Fan Savings Calculator found on the ENERGY STAR website.⁴⁰⁷ Default values were taken directly from the ENERGY STAR Ceiling Fan Savings Calculator, unless otherwise specified.

⁴⁰⁷ ENERGY STAR Ceiling Fan Savings Calculator (updated September 2013). <u>https://www.energystar.gov/sites/default/files/asset/document/light_fixture_ceiling_fan_calculator.xlsx</u>.

$$Energy Savings \left[\Delta kWh\right] = (kWh_{baseline} - kWh_{ES})_{fan} + (kWh_{baseline} - kWh_{ES})_{lgt} \times IEF_{E}$$

Equation 96

$$kWh_{baseline,Fan} = \frac{W_{Fan,baseline} \times AOH_{Fan}}{1,000}$$

Equation 97

$$kWh_{ES,Fan} = \frac{W_{Fan,ES} \times AOH_{Fan}}{1,000}$$

Equation 98

$$W_{Fan} = (W_{LS} \times OP_{LS}) + (W_{MS} \times OP_{MS}) + (W_{HS} \times OP_{HS})$$

Equation 99

$$kWh_{baseline,Lgt} = \frac{W_{Lgt,baseline} \times AOH_{Lgt}}{1,000}$$

Equation 100

$$kWh_{ES,Lgt} = \frac{W_{Lgt,ES} \times AOH_{Lgt}}{1,000}$$

Equation 101

kWh _{baseline}	=	Non-ENERGY STAR baseline energy usage
kWh _{ES}	=	ENERGY STAR average energy usage
IEF _E	=	Energy interactive effects factor from Table 322 assuming heating/cooling unknown ⁴⁰⁸
W Lgt,baseline	=	Conventional lighting total wattage = 58 W (160 W default value from ENERGY STAR calculator reduced to comply with EISA 2007 45 lumens/watt backstop) ⁴⁰⁹
W _{Lgt,ES}	=	Actual wattage of installed ENERGY STAR lighting; assume one high-efficiency 32 W lamp
W Fan,baseline	=	Conventional fan motor wattage
W _{Fan,ES}	=	ENERGY STAR fan motor wattage
W _{LS/MS/HS}	=	Fan motor wattage at low, medium, and high speed; see Table 323

⁴⁰⁸ The assumed energy interactive effects factors are taken from the residential lighting measure.

⁴⁰⁹ Assumes a mix of general service incandescent lamps. EISA 2007 45 lumens/watt backstop is approximately 36 percent of standard incandescent wattages for the 40, 60, 75, and 100 equivalent wattage categories. 160 W x 0.36 = 58 W.

OP _{LS/MS/HS}	=	Fan operating percentage at low, medium, and high speed; see Table 324
AOH _{Lgt}	=	Annual lighting operating hours = 803 hours/year (assuming 2.2 hours/day and 365 days/year operation) ⁴¹⁰
AOH _{Fan}	=	Annual fan operating hours = 1,095 hours/year (assuming 3.0 hours/day and 365 days/year operation) ⁴¹¹
1,000	=	Constant to convert from W to kW

Table 322. Ceiling Fans—Interactive Effects Factor for Cooling Energy Savings and Heating Energy Penalties⁴¹²

IEFE						
ClimateClimateClimateClimateClimateClimateZone 4:Zone 1:Zone 2:Zone 3:CorpusHeating/cooling typeAmarilloDallasHoustonChristi						
Heating/cooling unknown ⁴¹³	0.88	0.98	1.04	1.07	0.95	

Table 323. Ceiling Fans— Motor Wattages

Fan type	Fan speed	Fan motor wattage (W)
Conventional	Low	15
	Medium	34
	High	67
ENERGY STAR	Low	6
	Medium	23
	High	56

⁴¹⁰ The assumed annual operating hours are taken from the residential lighting measure.

⁴¹¹ The assumed annual operating hours are taken from the previously cited ENERGY STAR Light Fixture and Ceiling Fan Calculator.

⁴¹² Extracted from BEopt energy models used to estimate savings for envelope measures. Referencing the EISA baseline table, the typical lumen output was determined by taking the midpoint for the 60-watt equivalent lamp (900 lm), which was assumed to be the most typical installation. The resulting lumens were divided by the default wattage for incandescents (43 W), CFLs (13 W), and LEDs (10 W) resulting in an assumed efficacy for incandescents (21 lm/W), CFLs (70 lm/W), and LEDs (90 lm/W). IEF values were calculated using the following formula: 1 + HVACsavings/Lightingsavings.

⁴¹³ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Fan speed	Operating percentage (OP)
Low	40%
Medium	40%
High	20%

Table 324. Ceiling Fans—Operating Percentages

Demand Savings Algorithms

Peak demand savings were calculated using separate coincidence factors for the lighting and the fan motor portion of the ceiling fan savings. For lighting the coincidence factor varies based on climate zone. For the fan motor a coincidence factor of 0.446 was applied (derived from the EnergyGauge software ceiling fan profiles).

Peak Demand Savings $[\Delta kW] = kW_{Fan} + kW_{Lgt}$

Equation 102

$$kW_{Fan} = \frac{W_{Fan,baseline} - W_{Fan,ES}}{1,000} \times CF_{Fan}$$

Equation 103

$$kW_{Lgt} = \frac{W_{Lgt,baseline} - W_{Lgt,ES}}{1,000} \times CF_{Lgt,S/W} \times IEF_{D,S/W}$$

Equation 104

kW _{Fan}	=	Fan demand savings
CF _{Fan}	=	Fan motor peak coincidence factor = 0.446
<i>kW_{Lgt}</i>	=	Lighting demand savings
CF _{Lgt,S/W}	=	Lighting seasonal peak coincidence factor (Table 325)
IEF _{D,S/W}	=	Demand interactive effects factor from Table 326 assuming heating/cooling unknown ⁴¹⁴

⁴¹⁴ The assumed demand interactive effects factors are taken from the residential lighting measure.

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
Summer	0.060	0.053	0.063	0.059	0.032	
Winter	0.275	0.232	0.199	0.263	0.358	

Table 325. Ceiling Fans—Lighting Coincidence Factors⁴¹⁵

Table 326. Ceiling Fans—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties⁴¹⁶

		IEF _{D,S}			
Heating/cooling type	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Heating/cooling unknown417	1.39	1.28	1.58	1.20	1.38
IEF _{D,W}					
Heating/cooling type	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Heating/cooling unknown ⁴¹⁸	0.76	0.72	0.73	0.75	0.80

Deemed Energy Savings Tables

Table 327. Ceiling Fans—Energy Savings (kWh)

Climate Zone 1:	Climate Zone 2:	Climate Zone 3:	Climate Zone 4:	Climate Zone 5:
Amarillo	Dallas	Houston	Corpus Christi	El Paso
29.5	31.6	32.9	33.5	31.0

Deemed Summer Demand Savings Tables

Table 328. Ceiling Fans—Summer Peak Demand Savings (kW)

Climate Zone 1:	Climate Zone 2:	Climate Zone 3:	Climate Zone 4:	Climate Zone 5:
Amarillo	Dallas	Houston	Corpus Christi	El Paso
0.007	0.006	0.007	0.006	

⁴¹⁵ See Volume 1, Section 4.

⁴¹⁶ See Table 322.

⁴¹⁷ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

⁴¹⁸ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Deemed Winter Demand Savings Tables

Ū		• •	•	
Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
0.010	0.009	0.008	0.010	0.012

Table 329. Ceiling Fans—Winter Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 10 years according to the ENERGY STAR Ceiling Fan Savings Calculator.

This EUL is consistent with Docket No. 38025 approved in 2010.419

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Quantity of installed ENERGY STAR ceiling fan and light kits
- Manufacturer and model number
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

• Docket No. 38025. Petition of Electric Utility Marketing Managers of Texas to Amend Deemed Savings for ENERGY STAR Appliance Measures. Public Utility Commission of Texas.

⁴¹⁹ Docket No. 38025. Petition of Electric Utility Marketing Managers of Texas to Amend Deemed Savings for ENERGY STAR Appliance Measures. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language and updates to the ENERGY STAR specification table.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2014	TRM v3.0 update. Explanation of methodology and alignment with ENERGY STAR calculator. Introduction of interactive effects factors and in-service rates. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. Revision of interactive effects factors to reflect indoor-specific values for additional heating and cooling equipment types.
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter coincidence factors.
v4.0	10/10/2016	TRM v4.0 update. Updated interactive effect values using building energy simulation.
v5.0	10/2017	TRM v5.0 update. Updated footnote reference to ENERGY STAR calculator.
v6.0	11/2018	TRM v6.0 update. Updated interactive effect values.
v7.0	11/2019	TRM v7.0 update. Established deemed savings approach.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. No revision.
v10.0	10/2022	TRM v10.0 update. Reduced baseline lighting wattage and resulting deemed energy savings for compliance with reinstated EISA 2007 45 lumens/watt baseline.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 330. Ceiling Fans—Revision History

2.5.2 ENERGY STAR[®] Clothes Washers Measure Overview

TRM Measure ID: R-AP-CW Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR clothes washer. Savings are awarded at a flat per unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

These deemed savings are calculated using the federal standards effective January 1, 2018.

Eligibility Criteria

Not applicable.

Baseline Condition

Effective January 1, 2018, the baseline is the Department of Energy (DOE) minimum efficiency standard⁴²⁰ for top-loading clothes washers. While the DOE provides criteria for both top- and front-loading washers, only the standards for top-loading washers are listed below, as a top-loading unit is assumed to be the baseline equipment. This approach is based on customers having the option to install a top-loading clothes washer. Therefore, savings are calculated using the lower top-loading baseline condition.

⁴²⁰ DOE minimum efficiency standard for residential clothes washers. <u>https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/39</u>.

Table 331. Clothes Washers—Federal Standard

Product type	Current criteria as of January 1, 2018
Top-loading, standard (1.6 ft ³ or greater capacity)	IMEF ≥ 1.57 IWF≤ 6.5
Top-loading, compact (less than 1.6 ft ³ capacity)	IMEF ≥ 1.15 IWF≤ 12.0

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 8.1 Requirements for eligible clothes washers effective February 5, 2018.⁴²¹ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Table 332. Clothes Washers—ENERGY STAR Requirements

Product type	Current criteria as of February 5, 2018
ENERGY STAR residential front-loading (> 2.5 ft ³)	IMEF ≥ 2.76 IWF ≤ 3.2
ENERGY STAR residential top-loading (> 2.5 ft ³)	IMEF ≥ 2.06 IWF ≤ 4.3
ENERGY STAR residential small or compact (< 2.5 ft ³)	IMEF ≥ 2.07 IWF ≤ 4.2

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator found on the ENERGY STAR website.⁴²² This document will be updated regularly to apply the values provided in the latest available ENERGY STAR Appliance Savings Calculator. The most recent TRM version should be referenced to determine the savings for this measure.

Energy Savings $[\Delta kWh] = kWh_{baseline} - kWh_{ES}$

Equation 105

⁴²¹ ENERGY STAR Clothes Washer Final Version 8.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version%208.0%20Clo</u> <u>thes%20Washer%20Partner%20Commitments%20and%20Eligibility%20Criteria.pdf</u>.

⁴²² ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

Baseline Unit

 $kWh_{baseline} = kWh_{conv,machine} + kWh_{conv,WH} + kWh_{conv,dryer} + kWh_{conv,LPM}$

Equation 106

$$kWh_{conv,machine} = MCF \times RUEC_{conv} \times \frac{LPY}{RLPY}$$

Equation 107

$$kWh_{conv,WH} = WHCF \times RUEC_{conv} \times \frac{LPY}{RLPY}$$

Equation 108

$$kWh_{conv,LPM} = kW_{conv,LPM} \times (8,760 - LPY)$$

Equation 109

$$kWh_{conv,dryer} = \left[\left(\frac{Cap_{conv}}{IMEF_{FS}} \times LPY \right) - \left(RUEC_{conv} \times \frac{LPY}{RLPY} \right) - kWh_{conv,LPM} \right] \times \frac{DU}{DUF}$$

Equation 110

kWh _{baseline}	=	Federal standard baseline energy usage
kWh _{conv,machine}	=	Conventional machine energy
kWh _{conv,WH}	=	Conventional water heater energy
kWh _{conv,dryer}	=	Conventional dryer energy
kWh _{conv,LPM}	=	Conventional combined low-power mode energy
RUECconv	=	Conventional rated unit electricity consumption = 381 kWh/year (top-loading, standard) ⁴²³ , 163 kWh/year top-loading, compact)
LPY	=	Loads per year = 295
RLPY	=	Reference loads per year = 392
kW _{conv,LPM}	=	Combined low-power mode wattage of conventional unit = 0.00115 kW (top-loading, standard), 0.00144 kW (top-loading, compact)
Cap _{conv}	=	Average machine capacity = 4.5 ft^3 (top-loading, standard), 2.1 ft ³ (top-loading, compact)
IMEF _{FS}	=	Federal standard integrated modified energy factor (Table 331)

⁴²³ This value is taken from the ENERGY STAR appliance calculator and corresponds with the federal standard after March 7, 2015.

ENERGY STAR Unit

$$kWh_{ES} = kWh_{ES,machine} + kWh_{ES,WH} + kWh_{ES,dryer} + kWh_{ES,LPM}$$

Equation 111

$$kWh_{ES,machine} = MCF \times RUEC_{ES} \times \frac{LPY}{RLPY}$$

Equation 112

$$kWh_{ES,WH} = WHCF \times RUEC_{ES} \times \frac{LPY}{RLPY}$$

Equation 113

$$kWh_{ES,LPM} = kW_{ES,LPM} \times (8,760 - LPY)$$

Equation 114

$$kWh_{ES,dryer} = \left[\left(\frac{Cap_{ES}}{IMEF_{ES}} \times LPY \right) - \left(RUEC_{ES} \times \frac{LPY}{RLPY} \right) - kWh_{ES,LPM} \right] \times \frac{DU}{DUF}$$

Equation 115

kWh _{ES}	=	ENERGY STAR average energy usage
kWh _{ES,machine}	=	ENERGY STAR machine energy
kWh _{ES,WH}	=	ENERGY STAR water heater energy
kWh _{ES,dryer}	=	ENERGY STAR dryer energy
kWh _{ES,LPM}	=	ENERGY STAR combined low-power mode energy
RUEC _{ES}	=	ENERGY STAR rated unit electricity consumption (see Table 333)
<i>kW_{ES,LPM}</i>	=	Combined low-power mode wattage of ENERGY STAR unit (see Table 333)
IMEF _{ES}	=	ENERGY STAR integrated modified energy factor (see Table 332)
Cap _{ES}	=	Average machine capacity (see Table 333)

Product type	ENERGY STAR rated unit electricity consumption (kWh)	Average capacity (ft ³)	Combined low-power mode wattage (kW)
Residential front-loading (> 2.5 ft ³)	127	4.0	0.00160
Residential top-loading (> 2.5 ft ³)	230	4.5	0.00115
Residential small or compact (< 2.5 ft ³)	108	2.1	0.00144

Table 333. Clothes Washers—ENERGY STAR Characteristics⁴²⁴

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{AOH} \times CF_{S/W}$$

Equation 116

$$AOH = LPY \times d$$

Equation 117

Where:

AOH	=	Annual operating hours
CF _{S/W}	=	Seasonal peak coincidence factor (Table 334)
LPY	=	Loads per year = 295
d	=	Average wash cycle duration = 1 hour 425,426

Table 334. Clothes Washers—Coincidence Factors⁴²⁷

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.040	0.040	0.040	0.041	0.041
Winter	0.043	0.043	0.043	0.044	0.039

⁴²⁴ This value is taken from the ENERGY STAR appliance calculator and corresponds with the ENERGY STAR specification after March 7, 2015.

⁴²⁵ Weighted average of Consumer Reports Cycle Times for Top and Front-Loading Clothes Washers.

⁴²⁶ Consumer Reports. "Top-loading washers remain more popular with Americans". April 13, 2010. Weighted average of 75 percent Top-Loading Clothes Washers and 25 percent Front-Loading Clothes Washers.

⁴²⁷ See Volume 1, Section 4.

Deemed Energy Savings Tables

Туре	Water heater fuel type	Dryer fuel type	kWh/unit
Front-loading	Electric	Electric	428
> 2.5 ft ³		Gas	187
	Gas	Electric	275
		Gas	34
Top-loading	Electric	Electric	205
> 2.5 ft ³		Gas	114
	Gas	Electric	114
		Gas	23
All ≤ 2.5 ft ³	Electric	Electric	248
		Gas	41
	Gas	Electric	215
		Gas	8

Table 335. Clothes Washers—Energy Savings (kWh)

Deemed Summer Demand Savings Tables

Table 336. Clothes Washers—Summer Peak Demand Savings (kW)

	Fuel	Туре				Climate	
Washer type	Water heater	Dryer	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Zone 4: Corpus Christi	Climate Zone 5: El Paso
Front-loading	Electric	Electric	0.058	0.058	0.058	0.060	0.060
> 2.5 ft ³		Gas	0.025	0.025	0.025	0.026	0.026
	Gas	Electric	0.037	0.037	0.037	0.038	0.038
		Gas	0.005	0.005	0.005	0.005	0.005
Top-loading	Electric	Electric	0.028	0.028	0.028	0.028	0.028
> 2.5 ft ³		Gas	0.015	0.015	0.015	0.016	0.016
	Gas	Electric	0.015	0.015	0.015	0.016	0.016
		Gas	0.003	0.003	0.003	0.003	0.003
All ≤ 2.5 ft³	Electric	Electric	0.034	0.034	0.034	0.034	0.034
		Gas	0.006	0.006	0.006	0.006	0.006
	Gas	Electric	0.029	0.029	0.029	0.030	0.030
		Gas	0.001	0.001	0.001	0.001	0.001

Deemed Winter Demand Savings Tables

	Fuel type				.	Climate	
Washer type	Water heater	Dryer	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Zone 4: Corpus Christi	Climate Zone 5: El Paso
Front-loading	Electric	Electric	0.062	0.062	0.062	0.064	0.057
> 2.5 ft ³		Gas	0.027	0.027	0.027	0.028	0.025
	Gas	Electric	0.040	0.040	0.040	0.041	0.036
		Gas	0.005	0.005	0.005	0.005	0.005
Top-loading	Electric	Electric	0.030	0.030	0.030	0.031	0.027
> 2.5 ft ³		Gas	0.017	0.017	0.017	0.017	0.015
	Gas	Electric	0.017	0.017	0.017	0.017	0.015
		Gas	0.003	0.003	0.003	0.003	0.003
All <u><</u> 2.5 ft³	Electric	Electric	0.036	0.036	0.036	0.037	0.033
		Gas	0.006	0.006	0.006	0.006	0.005
	Gas	Electric	0.031	0.031	0.031	0.032	0.028
		Gas	0.001	0.001	0.001	0.001	0.001

Table 337. Clothes Washers—Winter Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an ENERGY STAR clothes washer is established at 11 years based on the Technical Support Document for the current DOE Final Rule standards for residential clothes washers.⁴²⁸

⁴²⁸ The median lifetime was calculated using the survival function outlined in the DOE Technical Support Document. Final Rule: Standards, Federal Register, 77 FR 32308 (May 31, 2012) and associated Technical Support Document. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=68&action=vi</u> ewlive. Download TSD at: <u>https://www.regulations.gov/document/EERE-2008-BT-STD-0019-0047</u>.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- Type of unit (top-loading, front-loading, or compact)
- DHW fuel type (gas or electric)
- Dryer fuel type (gas or electric)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 338. Clothes	Washers-	-Revision	History
--------------------	----------	-----------	---------

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. New ENERGY STAR standards incorporated.
v3.0	4/10/2015	TRM v3.0 update. Updated EUL to align with median lifetime. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. New ENERGY STAR algorithms and default assumptions incorporated.
v3.1	3/28/2016	TRM v3.1 March revision. Updated winter coincidence factors and winter and summer demand savings tables.
v4.0	10/10/2016	TRM v4.0 update. No revision.

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 update. Updated baseline IMEF to reflect changes in Federal Standard. Updated Front Load Washer IMEF to reflect changes in ENERGY STAR Specification. Added baseline for compact units to reflect Federal Standard for compact washers.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. Updated links and dates.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. General reference checks and text edits. Updated deemed savings tables to match savings algorithms and ENERGY STAR calculator.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.

2.5.3 ENERGY STAR[®] Clothes Dryers Measure Overview

TRM Measure ID: R-AP-CD Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR electric clothes dryer. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

Gas dryers are ineligible to claim savings under this measure. Savings may be claimed for the replacement of gas dryers if the decision to switch fuels predates the decision to install efficient equipment.

Baseline Condition

Effective January 1, 2015, the baseline is the Department of Energy (DOE) minimum federal efficiency standard⁴²⁹, adjusted to reflect recent combined energy factor (CEF) definition updates for vented and ventless clothes dryers. These adjusted baselines consider calculated differences between CEF values under original clothes dryer testing procedures of 10 CFR 430, Subpart B, Appendix D1, and those amended procedures outlined in Appendix D2; a change indicated in detail in the September 5, 2013, ENERGY STAR stakeholder webinar. These values are consistent with the current ENERGY STAR Appliance Savings Calculator.

⁴²⁹ DOE minimum efficiency standard for residential clothes dryers. <u>https://www.regulations.gov/document?D=EERE-2007-BT-STD-0010-0050</u>.

Product type	Average capacity (ft ³)	Amended minimum CEF: calculations	Minimum CEF levels (lbs/kWh)
Vented electric, standard	≥ 4.4	3.73 – (3.73 x 0.166)	3.11
Vented electric, compact (120 V)	< 4.4	3.61 – (3.61 x 0.166)	3.01
Vented electric, compact (240 V)	< 4.4	3.27 – (3.27 x 0.166)	2.73
Ventless electric, compact (240 V)	< 4.4	2.55 – (2.55 x 0.166)	2.13

Table 339. Clothes Dryers—Federal Standard

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 1.1 Requirements for eligible clothes dryers effective January 1, 2015.⁴³⁰ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Product type	Average Capacity (ft ³)	Minimum CEF levels (lbs/kWh)
ENERGY STAR ventless or vented electric, standard	≥ 4.4	3.93
ENERGY STAR ventless or vented electric, compact (120 V)	< 4.4	3.80
ENERGY STAR vented electric, compact (240 V)	< 4.4	3.45
ENERGY STAR ventless electric, compact (240 V)	< 4.4	2.68

Table 340. Clothes Dryers—ENERGY STAR Requirements

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator found on the ENERGY STAR website.⁴³¹ This document will be updated regularly to apply the values provided in the latest available ENERGY STAR appliance calculator. The most recent TRM version should be referenced to determine the savings for this measure.

⁴³⁰ ENERGY STAR Clothes Dryers Final Version 1.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Final%20Version%201.1%20Clothes%20Dryers%20Specification%20-</u>%20Program%20Commitment%20Criteria%20and%20Eligibility%20Criteria.pdf.

⁴³¹ ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.
	Table 341.	Clothes	Dryers-	-Default	Average	Load
--	------------	---------	---------	----------	---------	------

Product type	Average load (lbs)
Vented electric, standard	8.45
Vented electric, compact (120 V)	3.00
Vented electric, compact (240 V)	3.00
Ventless electric, compact (240 V)	3.00

Energy Savings $[\Delta kWh] = kWh_{baseline} - kWh_{ES}$

Equation 118

Baseline Unit

$$kWh_{baseline} = \frac{AvgLoad \times LPY}{CEF_{baseline}}$$

Equation 119

Where:

kWh _{baseline}	=	Federal standard baseline energy usage
AvgLoad	=	Average load in lbs (Table 341)
LPY	=	Loads per year = 283
CEF baseline	=	Baseline combined energy factor (see Table 339)

ENERGY STAR Unit

$$kWh_{ES} = \frac{AvgLoad \times LPY}{CEF_{ES}}$$

Equation 120

Where:

kWh _{ES}	=	ENERGY STAR average energy usage
CEF _{ES}	=	ENERGY STAR minimum combined energy factor (see Table 340)

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{AOH} \times CF_{S/W}$$

Equation 121

Where:

AOH	=	Annual operating hours = $(8,760 - 8,463) = 297$ hours ⁴³²
-----	---	---

 $CF_{S/W}$ = Seasonal peak coincidence factor (Table 342)

Table 342. Clothes Dryers—Coincidence Factors⁴³³

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.041	0.041	0.041	0.041	0.042
Winter	0.045	0.045	0.041	0.048	0.047

Deemed Energy Savings Tables

Table 343. Clothes Dryers—Energy Savings (kWh)

Product type	Average capacity (ft ³)	Energy savings (kWh)
Ventless or vented electric, standard	≥ 4.4	160
Ventless or vented electric, compact (120 V)	< 4.4	59
Vented electric, compact (240 V)	< 4.4	65
Ventless electric, compact (240 V)	< 4.4	82

Deemed Summer Demand Savings Tables

Table 344. Clothes Dryers—Summer Peak Demand Savings (kW)

Product type	Average capacity (ft ³)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Ventless or vented electric, standard	≥ 4.4	0.022	0.022	0.022	0.022	0.023
Ventless or vented electric, compact (120 V)	< 4.4	0.008	0.008	0.008	0.008	0.008
Vented electric, compact (240 V)	< 4.4	0.009	0.009	0.009	0.009	0.009
Ventless electric, compact (240 V)	< 4.4	0.011	0.011	0.011	0.011	0.012

⁴³² Concerning annual operating hours: Minute-by-minute field data shows "96.6% ± 0.5% idle time, or about 8463 hours." Hannas, Benjamin and Gilman, Lucinda. Dryer Field Study, 39. <u>https://neea.org/img/uploads/neea-clothes-dryer-field-study.pdf</u>.

⁴³³ See Volume 1, Section 4.

Deemed Winter Demand Savings Tables

Product type	Average capacity (ft ³)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Ventless or vented electric, standard	≥ 4.4	0.024	0.024	0.022	0.026	0.025
Ventless or vented electric, compact (120 V)	< 4.4	0.009	0.009	0.008	0.009	0.009
Vented electric, compact (240 V)	< 4.4	0.010	0.010	0.009	0.011	0.010
Ventless electric, compact (240 V)	< 4.4	0.012	0.013	0.011	0.013	0.013

Table 345. Clothes Dryers—Winter Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an ENERGY STAR clothes dryer is established at 16 years based on the current DOE Final Rule standards for clothes dryers.⁴³⁴

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- Type of unit (vented or ventless)
- Capacity (≥ 4.4 ft³/standard or < 4.4 ft³/compact)
- Proof of purchase including date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

⁴³⁴ Technical Support Document (April 2011). See "Appendix 8C.Lifetime Distributions": <u>https://www.regulations.gov/document?D=EERE-2007-BT-STD-0010-0053</u>

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change		
v7.0	10/2019	TRM v7.0 origin.		
v8.0	10/2020	TRM v8.0 update. No revision.		
v9.0	10/2021	TRM v9.0 update. No revision.		
v10.0	10/2022	TRM v10.0 update. No revision.		
v11.0	10/2023	TRM v11.0 update. No revision.		

Table 346. Clothes Dryers—Revision History

2.5.4 ENERGY STAR[®] Dishwashers Measure Overview

TRM Measure ID: R-AP-DW Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR dishwasher. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

This measure applies to both standard and compact dishwasher types.

Baseline Condition

Effective May 30, 2013, the baseline is the Department of Energy (DOE) minimum efficiency standard⁴³⁵ for dishwashers.

Product type	Annual energy use (kWh/year)	Water consumption (gallons/cycle)
Standard (≥ 8 place settings)	≤ 307	≤ 5.0
Compact (< 8 place settings)	≤ 222	≤ 3.5

Table 347. Dishwashers—Federal Standard

⁴³⁵ DOE minimum efficiency standard for residential dishwashers. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=38&action=vi ewlive</u>.

High-Efficiency Condition

The following table displays the ENERGY STAR Final Version 6.0 Requirements for eligible dishwashers effective January 29, 2016.⁴³⁶ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Product type	Annual energy use (kWh/year)	Water consumption (gallons/cycle)
Standard (\geq 8 place settings + 6 serving pieces)	≤ 270	≤ 3.5
Compact (< 8 place settings + 6 serving pieces)	≤ 203	≤ 3.1

Table 348. Dishwashers—ENERGY STAR Requirements

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator found on the ENERGY STAR website and the revised ENERGY STAR specification in Table 348.⁴³⁷ Default values were taken directly from the ENERGY STAR Appliance Savings Calculator. This document will be updated regularly to apply the values provided in the latest available ENERGY STAR specification and appliance calculator. The most recent TRM version should be referenced to determine measure savings for this measure.

	$Energy Savings [\Delta kWh] = kWh_{baseline} - kWh_{ES}$
Equation 122	
	$kWh_{baseline} = kWh_{conv,machine} + kWh_{conv,WH}$
Equation 123	
	$kWh_{conv,machine} = RUEC_{conv} \times MCF$
Equation 124	
	$kWh_{conv,WH} = RUEC_{conv} \times WHCF$
Equation 125	
	$kWh_{ES} = kWh_{ES}maching + kWh_{ES}WH$
Equation 126	······ES ······ES,muchune · ······ES,w fi

 ⁴³⁶ ENERGY STAR Dishwashers Final Version 6.0 Program Requirements. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Residential%20Dishwasher%20
 Version%206.0%20Final%20Program%20Requirements.pdf.

⁴³⁷ ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

 $kWh_{ES,machine} = RUEC_{ES} \times MCF$

Equation 127

 $kWh_{ES,WH} = RUEC_{ES} \times WHCF$

Equation 128

Where:

kWh _{baseline}	=	Federal standard baseline energy usage
kWh _{ES}	=	ENERGY STAR average energy usage
kWh _{conv,machine}	=	Conventional machine energy
kWh _{conv,WH}	=	Conventional water heater energy
kWh _{ES,machine}	=	ENERGY STAR machine energy
kWh _{ES,WH}	=	ENERGY STAR water heater energy
RUEC _{conv}	=	Conventional rated use electricity consumption = 307 kWh/year for standard and 222 kWh/year for compact (Table 347)
RUEC _{ES}	=	ENERGY STAR rated use electricity consumption = 270 kWh/year for standard and 203 kWh/year for compact (Table 348)
MCF	=	Machine consumption factor = 44 percent
WHCF	=	Water heater consumption factor = 56 percent

Demand Savings Algorithms

Peak Demand Savings $[\Delta kW] = \frac{\Delta kWh}{AOH} \times CF_{S/W}$

Equation 129

$$AOH = CPY \times d$$

Equation 130

Where:

AOH	=	Annual operating hours
CF _{S/W}	=	Seasonal peak coincidence factor = (Table 349)
СРҮ	=	Cycles per year = 215
d	=	Average wash cycle duration = 2.1 hours ^{438}

⁴³⁸ Average of consumer reports cycle times for dishwashers.

Table 349. Dishwashers—Coincidence Factors⁴³⁹

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.042	0.041	0.042	0.041	0.042
Winter	0.106	0.104	0.090	0.112	0.129

Deemed Energy Savings Tables

Table 350. Dishwashers—Energy Savings (kWh)

Product type	Electric DHW	Gas DHW
Standard	37	16
Compact	19	8

Deemed Summer Demand Savings Tables

Table 351. Dishwashers—Summer Peak Demand Savings (kW)

Dishwasher type	DHW fuel	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Standard	Electric	0.003	0.003	0.003	0.003	0.003
	Gas	0.002	0.001	0.002	0.001	0.002
Compact	Electric	0.002	0.002	0.002	0.002	0.002
	Gas	0.001	0.001	0.001	0.001	0.001

Deemed Winter Demand Savings Tables

Table 352. Dishwashers—Winter Peak Demand Savings (kW)

Dishwasher type	DHW fuel	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Standard	Electric	0.009	0.009	0.007	0.009	0.011
	Gas	0.004	0.004	0.003	0.004	0.005
Compact	Electric	0.004	0.004	0.004	0.005	0.005
	Gas	0.002	0.002	0.002	0.002	0.002

⁴³⁹ See Volume 1, Section 4.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 15 years based on the Technical Support Document for the current DOE Final Rule standards for residential dishwashers.⁴⁴⁰

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- Type of dishwasher (standard or compact)
- Fuel type of water heater (gas or electric)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

⁴⁴⁰ The median lifetime was calculated using the survival function outlined in the DOE Technical Support Document. Final Rule: Standards, Federal Register, 77 FR 31918 (May 30, 2012) and associated Technical Support Document. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=38&action=vi ewlive.</u>

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. New ENERGY STAR specification incorporated into the measure. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. Final ENERGY STAR specification incorporated into the measure. Consolidated table formats.
v3.1	3/28/2016	TRM 3.1 March revision. Updated summer and winter coincidence factors and demand savings tables.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. Updated footnote reference to ENERGY STAR calculator.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updated links and dates.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. No revision.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 353. Dishwashers—Revision History

2.5.5 ENERGY STAR[®] Refrigerators Measure Overview

TRM Measure ID: R-AP-RF Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Replace-on-burnout, early retirement, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to all ENERGY STAR refrigerators that meet the criteria for the ENERGY STAR label specified below.

Eligibility Criteria

To qualify for early retirement, the ENERGY STAR unit must replace an existing, full-size unit with a maximum age of 20 years. To determine the remaining useful life of an existing unit, see Table 357. All retired refrigerators must be dismantled in an environmentally safe manner in accordance with applicable federal, state, and local regulations. The installer will provide documentation of proper disposal of refrigerators. To receive early retirement savings, the unit to be replaced must be functioning at the time of removal.

Newly installed refrigerators must meet current ENERGY STAR efficiency levels.

Baseline Condition

For new construction or replace-on-burnout, the baseline is the Department of Energy (DOE) minimum efficiency standard⁴⁴¹ for refrigerators, effective September 15, 2014.

⁴⁴¹ DOE minimum efficiency standard for residential refrigerators and freezers. <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43</u>.

For early retirement, the baseline for refrigerators is the annual unit energy consumption of an assumed refrigerator's adjusted energy usage rating based on an average of values reported by the Midwest Energy Performance Analytics (MwEPA) Refrigerator and Freezer Energy Rating Database.⁴⁴² Since the federal standard effective date occurred in late 2014, existing units manufactured as of 2015 are not eligible for early retirement.

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 5.1 Requirements for eligible consumer refrigeration products effective September 15, 2014.⁴⁴³ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

ENERGY STAR refrigerator						
Product type Volume Criteria as of September 15, 2014						
Full-size refrigerators and refrigerator-freezers	7.75 cubic feet or greater	Approximately 10 percent more energy efficient than the minimum federal standard (see Table 355)				

Table 354. Refrigerators—ENERGY STAR Requirements

⁴⁴² Refrigerator and Freezer Energy Rating Database. Midwest Energy Performance Analytics, Inc. in combination with the State of Wisconsin and US Department of Energy's Weatherization Assistance Program. <u>https://www.energy.gov/eere/wap/articles/refrigerator-and-freezer-energy-rating-databasesearch-tool</u>.

⁴⁴³ ENERGY STAR Consumer Refrigeration Products Final Version 5.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%205.1%20Consumer%20Refrigeration%20Products%20Final%20Specification_0.pdf</u>.

Product number	Product class	Baseline energy usage federal standard as of September 15, 2014 (kWh/year) ⁴⁴⁵	Average ENERGY STAR energy usage (kWh/year) ⁴⁴⁶	Adjusted volume ⁴⁴⁷ (cubic feet)	Baseline energy usage (kWh/year)	ENERGY STAR energy usage (kWh/year)
3	Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker	8.07 × AV + 233.7	7.26 × AV + 210.3	16.9	370.1	333.0
5	Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker	8.85 × AV + 317.0	7.97 × AV + 285.3	18.6	481.5	433.5
5A	Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	9.25 × AV + 475.4	8.33 × AV + 436.3	32.1	772.1	703.5
7	Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	8.54 × AV + 432.8	7.69 × AV + 397.9	30.4	692.1	631.4

Table 355. Refrigerators—Formulas to Calculate the Energy Usage by Product Class⁴⁴⁴

⁴⁴⁴ Federal standard for refrigerators and freezers.

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=37&action=viewlive. Select product classes excluded. ⁴⁴⁵ http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf.

⁴⁴⁶ Approximately ten percent more efficient than baseline, as specified in the ENERGY STAR Appliance Savings Calculator (updated September 2015). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

⁴⁴⁷ AV is calculated as a simple average across all refrigerators in the corresponding Product Class utilizing data provided by <u>https://www.energystar.gov/productfinder/product/certified-residential-refrigerators/results</u>.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

New Construction or Replace-on-Burnout

Energy Savings Algorithms

Energy Savings
$$[\Delta kWh] = kWh_{baseline} - kWh_{ES}$$

Equation 131

Where:

kWh _{baseline}	=	Federal standard baseline energy usage (see Table 355)
kWh _{ES}	=	ENERGY STAR average energy usage (see Table 355)

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{8,760 hrs} \times CF_{S/W}$$

Equation 132

Where:

$$C_{S/W}$$
 = Seasonal coincidence factor (see Table 356)

Table 356. Refrigerators—Coincidence Factors448

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	1.112	1.099	1.108	1.100	1.081
Winter	0.929	0.966	0.924	0.941	0.966

Early Retirement

Annual energy (kWh) and peak demand (kW) savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (EUL RUL)

⁴⁴⁸ See Volume 1, Section 4.

Annual energy and peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

Where:

- RUL = Remaining useful life (see Table 357); if unknown, assume the age of the replaced unit is equal to the EUL resulting in a default RUL of 5.0 years
- $EUL = Estimated useful life = 16 years^{449}$

Age of replaced refrigerator (years)	RUL (years)	Age of replaced refrigerator (years)	RUL (years)
1	15.2	12	7.0
2	14.2	13	6.6
3	13.2	14	6.3
4	12.2	15	6.0
5	11.2	16	5.0
6	10.3	17	4.0
7	9.6	18	3.0
8	8.9	19	2.0
9	8.3	20	1.0
10	7.8	21 ^{451,452}	0.0
11	7.4		

Table 357. Refrigerators—RUL of Replaced Unit ⁴⁵⁰

⁴⁴⁹ Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43</u>. Download TSD at: https://www.regulations.gov/document/EERE-2008-BT-STD-0012-0128.

⁴⁵⁰ Current federal standard effective date is 9/15/2014. Since the federal standard effective date occurred in late 2014, existing units manufactured as of 2015 are not eligible to use the early retirement baseline and should use the ROB baseline instead.

⁴⁵¹ RULs are capped at the 75th percentile of equipment age as determined based on DOE survival curves (see Figure 8). Systems older than this age should use the ROB baseline. See the January 2015 memo, "Considerations for early replacement of residential equipment," for further detail.

⁴⁵² Ward, B., Bodington, N., Farah, H., Reeves, S., and Lee, L. "Considerations for early replacement of residential equipment." Prepared by the Evaluation, Measurement, and Verification (EM&V) team for the Electric Utility Marketing Managers of Texas (EUMMOT). January 2015. This document has been made available to all Texas investor-owned utilities through the EM&V team's SharePoint.

Derivation of RULs

ENERGY STAR refrigerators have an estimated useful life of 16 years. This estimate is consistent with the age at which approximately 50 percent of the refrigerators installed in a given year will no longer be in service, as described by the survival function in Figure 8.

Figure 8. Refrigerators—Survival Function⁴⁵³

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 8. The age of the refrigerator being replaced is found on the horizontal axis, and the corresponding percentage of surviving refrigerators is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. Then, the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For example, assume a refrigerator being replaced is 15 years old. The corresponding percent surviving value is 56 percent. Half of 56 percent is 28 percent. The age corresponding to 28 percent on the chart is 21 years. Therefore, the RUL of the refrigerator being replaced is (21 - 15) = 6 years.

⁴⁵³ Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. <u>http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf</u>.

Energy Savings Algorithms

For the RUL time period:

$$kWh_{savings,ER} = kWh_{manf} - kWh_{ES}$$

Equation 133

For the remaining time in the EUL period., calculate annual savings as you would for a replaceon-burnout project:

$$kWh_{savings,ROB} = kWh_{baseline} - kWh_{ES}$$

Equation 134

Where:

 kWh_{manf} = 968 $kWh/Year^{454}$

Demand Savings Algorithms

To calculate demand savings for the early retirement of a refrigerator, a similar methodology is used as for replace-on-burnout installations, with separate savings calculated for the remaining useful life of the unit, and the remainder of the EUL as outlined in the section above.

For the RUL time period:

$$kW_{savings,ER} = \frac{kWh_{avings,ER}}{8,760 \ hrs} \times CF_{S/W}$$

Equation 135

For the remaining time in the EUL period, calculate annual savings as you would for a replaceon-burnout project:

$$kW_{savings,ROB} = \frac{kWh_{savings,ROB}}{8,760 \text{ hrs}} \times CF_{S/W}$$

Equation 136

Annual deemed summer peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

⁴⁵⁴ This is the weighted average of Adjusted annual unit energy consumption, derived from the MwEPA Refrigerator and Freezer Energy Rating Database (or from metering). Weights are calculated from the millions-of-households measurements obtained from the Residential Energy Consumption Survey, or RECS, (<u>https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6.php</u>) corresponding to the year range classifications of refrigerators greater than 15 years old (specifically, 15-to-19-yearsold and 20-or-more-years-old). Data in which refrigerators' model years were older than 1975 were excluded.

Deemed Energy Savings Tables

Through-the- door ice?	Door type	Product class	ROB savings (kWh/year)	ER savings (kWh/year)
No	Top freezer	3: Refrigerator freezers—automatic defrost with a top-mounted freezer without an automatic icemaker	37	224
	Bottom freezer	5: Refrigerator-freezers—automatic defrost with a bottom-mounted freezer without an automatic icemaker	48	200
Yes	Bottom freezer	5A: Refrigerator-freezers— automatic defrost with bottom- mounted freezer with an automatic icemaker with TTD ice service	69	147
	Side-by-side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	61	130
Unknown or aver	age refrigerator4	44	205	

Table 358. Refrigerators—Energy Savings (kWh)

NRCAN.

⁴⁵⁵ An "Unknown or Average" refrigerator's savings are calculated as the difference between the weighted average of baseline energy usage ratings and the weighted average of ENERGY STAR energy usage ratings for the four selected refrigerator categories, with weights ascertained from averages of refrigerators in 10–14-year-old, 5–9-year-old, and 2–4-year-old age groups. The data used to calculate weights is hosted by Natural Resources Canada (NRCAN) at the following link which contains a table of the distribution of refrigerator types in households by year: http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/showTable.cfm?type=CM§or=aaa&juris=ca&r_n=3&page=1. Weights were similarly calculated utilizing data from RECS (data, which is summarized, i.e., not yearly, and located here: https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6.php). While the reported distribution of refrigerator types between the two sets of data varies, we prefer the year-level granularity of the data from NRCAN considering that the differences between both sets of weighted average baseline energy usage and weighted average ENERGY STAR energy usage were nearly identical. Hence, we elect to utilize the more detailed weightings derived from the data hosted by

Deemed Summer Demand Savings Tables

Through-the- door ice?	Door type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
No	Top freezer	3: Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker	0.0047	0.0047	0.0047	0.0047	0.0046
	Bottom freezer	5: Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker	0.0061	0.0060	0.0061	0.0060	0.0059
Yes	Bottom freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.0087	0.0086	0.0087	0.0086	0.0085
	Side-by-side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.0077	0.0076	0.0077	0.0076	0.0075
Unknown or ave	erage refrigerator	·	0.0056	0.0056	0.0056	0.0056	0.0055

Table 359. Refrigerators—Replace-on-Burnout – Summer Peak Demand Savings (kW)

Through-the- door ice?	Door type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
No	Top freezer	3: Refrigerator freezers—automatic defrost with top- mounted freezer without an automatic icemaker	0.028	0.028	0.028	0.028	0.028
	Bottom freezer	5: Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker	0.025	0.025	0.025	0.025	0.025
Yes	Bottom freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.016	0.016	0.016	0.016	0.016
	Side-by-side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.019	0.018	0.019	0.018	0.018
Unknown or average refrigerator			0.026	0.026	0.026	0.026	0.025

Table 360. Refrigerators—Early Retirement—Summer Peak Demand Savings (kW)

Deemed Winter Demand Savings Tables

Through-the- door ice?	Door type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
No	Top freezer	3: Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker	0.0039	0.0041	0.0039	0.0040	0.0041
	Bottom freezer	5: Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker	0.0051	0.0053	0.0051	0.0052	0.0053
Yes	Bottom freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.0073	0.0076	0.0072	0.0074	0.0076
	Side-by-side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.0064	0.0067	0.0064	0.0065	0.0067
Unknown or average refrigerator			0.0047	0.0049	0.0047	0.0048	0.0049

Table 361. Refrigerators—Replace-on-Burnout—Winter Peak Demand Savings (kW)

Through-the- door ice?	Door type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
No	Top freezer	3: Refrigerator freezers—automatic defrost with top- mounted freezer without an automatic icemaker	0.024	0.025	0.024	0.024	0.025
	Bottom freezer	5: Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker	0.021	0.022	0.021	0.021	0.022
Yes	Bottom freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.014	0.014	0.014	0.014	0.014
	Side-by-side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.016	0.016	0.015	0.016	0.016
Unknown or ave	erage refrigerator		0.022	0.023	0.022	0.022	0.023

Table 362. Refrigerators—Early Retirement—Winter Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 16 years based on the current DOE Final Rule standards for residential refrigerators.⁴⁵⁶

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Baseline type (new construction, replace-on-burnout, or early retirement)
- Manufacturer and model number
- Photograph demonstrating functionality of existing equipment and/or customer responses to survey questionnaire documenting the condition of the replaced unit and their motivation for measure replacement for early retirement eligibility determination (early retirement only)
- Document proper disposal of the existing refrigerator (early retirement only)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

⁴⁵⁶ Final Rule: Standards, Federal Register, 76 FR 57516 (Sept. 15, 2011) and associated Technical Support Document. <u>http://www1.eere.energy.gov/buildings/appliance_sta</u> <u>https://www.regulations.gov/document/EERE-2008-BT-STD-0012-0128</u> <u>ndards/product.aspx/productid/43</u>. Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin
v2.0	4/18/2014	TRM v2.0 update. Low-income and hard-to-reach Market Transformation section merged with the main measure as "early retirement" option. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. New ENERGY STAR standards incorporated.
v3.0	4/10/2015	TRM v3.0 update. early retirement savings may be claimed through any appropriately designed program in accordance with the EM&V team's memo, "Considerations for early replacement of residential equipment." Remaining useful lifetimes updated. CF updated to align with new peak demand methodology.
v3.1	11/05/2015	TRM v3.1 update. Correction to legacy CF. Revision to align with ENERGY STAR calculator and specification.
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter coincidence factors.
v4.0	10/10/2016	TRM v4.0 update. Updated RUL value for units with the age of seven years and added RUL values for units with an age of one to five years. Added a default RUL value for when the age of the unit is unknown. Eliminated the eligibility requirement of the existing unit to have an age of minimum of five years.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. Updated database reference.
v7.0	10/2019	TRM v7.0 update. Established deemed savings approach.
v8.0	10/2020	TRM v8.0 update. Updated early retirement age eligibility.
v9.0	10/2021	TRM v9.0 update. Updated early retirement age eligibility.
v10.0	10/2022	TRM v10.0 update. Updated early retirement age eligibility.
v11.0	10/2023	TRM v11.0 update. Updated early retirement age eligibility.

Table 363. Refrigerators—Revision History

2.5.6 ENERGY STAR[®] Freezers Measure Overview

TRM Measure ID: R-AP-FZ Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Replace-on-burnout, early retirement, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to all ENERGY STAR freezers that meet the criteria for the ENERGY STAR label specified below.

Eligibility Criteria

To qualify for early retirement, the ENERGY STAR unit must replace an existing, full-size unit with a maximum age of 27 years. To determine the remaining useful life of an existing unit, see Table 367. All retired freezers must be dismantled in an environmentally safe manner in accordance with applicable federal, state, and local regulations. The installer will provide documentation of proper disposal of freezers. In order to receive early retirement savings, the unit to be replaced must be functioning at the time of removal.

Newly-installed freezers must meet current ENERGY STAR efficiency levels.

Baseline Condition

For new construction or replace-on-burnout, the baseline is the Department of Energy (DOE) minimum efficiency standard⁴⁵⁷ for freezers, effective September 15, 2014.

For early retirement, the baseline for freezers is the annual unit energy consumption of a freezer's adjusted energy usage rating based on an average of values reported by the Midwest Energy Performance Analytics (MwEPA) Refrigerator and Freezer Energy Rating Database.⁴⁵⁸

⁴⁵⁷ DOE minimum efficiency standard for residential refrigerators and freezers. <u>https://www.ecfr.gov/cgi-bin/text-idx?SID=48f64e166fe3561666f871e521996e13&mc=true&node=se10.3.430_132&rgn=div8</u>.

⁴⁵⁸ Refrigerator and Freezer Energy Rating Database. Midwest Energy Performance Analytics, Inc. in combination with the State of Wisconsin and US Department of Energy's Weatherization Assistance Program. <u>https://www.energy.gov/eere/wap/articles/refrigerator-and-freezer-energy-rating-databasesearch-tool</u>.

Since the federal standard effective date occurred in late 2014, existing units manufactured as of 2015 are not eligible for early retirement.

Alternatively, the baseline annual energy usage of the freezer being replaced may be estimated by metering for a period of at least two hours using the measurement protocol specified in the DOE report, "Incorporating Refrigerator Replacement into the Weatherization Assistance Program."⁴⁵⁹

To determine annual kWh of the freezer being replaced, use the following formula:

Annual kWh Usage =
$$\frac{WH \times 8,760}{h \times 1,000}$$

Equation 137

Where:

WH	=	Watt-hours metered during a time period
h	=	Measurement time period (hours)
8,760	=	Total hours per year
1,000	=	Constant to convert from W to kW

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 5.1 Requirements for eligible consumer refrigeration products effective September 15, 2014.⁴⁶⁰ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

ENERGY STAR freezer							
Product type	Volume	Criteria as of September 15, 2014					
Freezers	7.75 cubic feet or greater	Approximately ten percent more energy efficient than the minimum federal standard (see Table 355)					
Compact freezers	Less than 7.75 cubic feet	Approximately ten percent more energy efficient than the minimum federal standard (see Table 355)					

Table 364. Freezers—ENERGY STAR Requirements⁴⁶¹

⁴⁵⁹ Alex Moore, DandR International, Ltd. "Incorporating Refrigerator Replacement into the Weatherization Assistance Program" Information Tool Kit." Department of Energy. November 19, 2001. <u>https://aceee.org/files/proceedings/2002/data/papers/SS02_Panel2_Paper16.pdf</u>.

⁴⁶⁰ ENERGY STAR Consumer Refrigeration Products Final Version 5.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%205.1%20Consumer%20Refrigeration%20Products%20Final%20Specification_0.pdf</u>.

⁴⁶¹ https://www.energystar.gov/products/appliances/refrigerators/key product criteria.

Product number	Full product name ⁴⁶³	Product class	Baseline energy usage federal standard (kWh/year) ⁴⁶⁴	Average ENERGY STAR energy usage (kWh/year) ⁴⁶⁵	Adjusted volume ⁴⁶⁶ (cubic feet)	Baseline energy usage (kWh/year)	ENERGY STAR energy usage (kWh/year)
8	Upright freezers with manual defrost	Upright (manual defrost)	5.57 × AV + 193.7	5.01 × AV + 174.3	16.12	283.5	255.1
9	Upright freezers with automatic defrost without an automatic icemaker	Upright (auto defrost)	8.62 × AV + 228.3	7.76 × AV + 205.5	29.96	486.6	438.0
10	Chest freezers and all other freezers except compact freezers	Chest	7.29 × AV + 107.8	6.56 × AV + 97	25.25	291.8	262.6
16	Compact upright freezers with manual defrost	Compact upright (manual defrost)	8.65 × AV + 225.7	7.79 × AV + 203.1	5.34	271.9	244.7
17	Compact upright freezers with automatic defrost	Compact upright (auto defrost)	10.17 × AV + 351.9	9.15 × AV + 316.7	7.95	432.7	389.4
18	Compact chest freezers	Compact chest	9.25 × AV + 136.8	8.33 × AV + 123.1	9.06	220.6	198.6

Table 365. Freezers—Formulas to Calculate the Energy Usage by Product Class⁴⁶²

<u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=37&action=viewlive</u>. Select product classes excluded.
 ⁴⁶³ Note that when calculating deemed savings for upright freezers, we calculated a weighted average of adjusted energy usage of manual versus automatic defrost upright freezers, with weights based on the number of millions-of-households which contain these types of freezers, obtained from the Residential Energy Consumption Survey, or RECS, (https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6.php), thus

⁴⁶² Federal standard for refrigerators and freezers.

eliminating this input from consideration. ⁴⁶⁴ https://www.ecfr.gov/cgi-bin/text-idx?SID=48f<u>64e166fe3561666f871e521996e13&mc=true&node=se10.3.430_132&rgn=div8</u>.

⁴⁶⁵ Approximately 10 percent more efficient than baseline, as specified in the ENERGY STAR Appliance Savings Calculator (updated September 2015). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

⁴⁶⁶ AV is calculated as a simple average per selected freezer product type in the corresponding Product Class utilizing data provided by <u>https://www.energystar.gov/productfinder/product/certified-residential-freezers/results</u>.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

New Construction or Replace-on-Burnout

Energy Savings Algorithms

Energy Savings
$$[\Delta kWh] = kWh_{baseline} - kWh_{ES}$$

Equation 138

Where:

kWh _{baseline}	=	Federal standard baseline energy usage (see Table 365)
kWh _{ES}	=	ENERGY STAR average energy usage (see Table 365)

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{8,760 hrs} \times CF_{S/W}$$

Equation 139

Where:

$$CF_{S/W}$$
 = Seasonal coincidence factor (see Table 366)

Table 366. Freezers—Coincidence Factors⁴⁶⁷

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	1.112	1.099	1.108	1.100	1.081
Winter	0.929	0.966	0.924	0.941	0.966

Early Retirement

Annual energy (kWh) and peak demand (kW) savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (EUL RUL)

⁴⁶⁷ See Volume 1, Section 4.

Annual energy and peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

Where:

- RUL = Remaining useful life (see Table 367); if unknown, assume the age of the replaced unit is equal to the EUL resulting in a default RUL of 5.0 years
- $EUL = Estimated useful life = 22 years^{468}$

Age of replaced freezer (years)	RUL (years)	Age of replaced freezer (years)	RUL (years)	Age of replaced freezer (years)	RUL (years)
1	20.7	10	12.1	19	6.6
2	19.7	11	11.3	20	6.2
3	18.7	12	10.6	21	5.9
4	17.7	13	9.9	22	5.0
5	16.7	14	9.2	23	4.0
6	15.7	15	8.6	24	3.0
7	14.8	16	8.1	25	2.0
8	13.8	17	7.5	26	1.0
9	13.0	18	7.1	27 ^{470,471}	0.0

Table 367. Freezers—RUL of Replaced Unit ⁴⁶⁹

⁴⁶⁸ Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. Download TSD at: https://www.regulations.gov/document/EERE-2008-BT-STD-0012-0128.

⁴⁶⁹ Current federal standard effective date is 9/15/2014. Since the federal standard effective date occurred in late 2014, existing units manufactured as of 2015 are not eligible to use the early retirement baseline and should use the ROB baseline instead.

⁴⁷⁰ RULs are capped at the 75th percentile of equipment age as determined based on DOE survival curves (see Figure 8). Systems older than this age should use the ROB baseline. See the January 2015 memo, "Considerations for early replacement of residential equipment," for further detail.

⁴⁷¹ Ward, B., Bodington, N., Farah, H., Reeves, S., and Lee, L. "Considerations for early replacement of residential equipment." Prepared by the Evaluation, Measurement, and Verification (EM&V) team for the Electric Utility Marketing Managers of Texas (EUMMOT). January 2015. This document has been made available to all Texas investor-owned utilities through the EM&V team's SharePoint.

Derivation of RULs

ENERGY STAR freezers have an estimated useful life of 22 years. This estimate is consistent with the age at which approximately 50 percent of the freezers installed in a given year will no longer be in service, as described by the survival function in Figure 9.

Figure 9. Freezers—Survival Function⁴⁷²

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 9. The age of the freezer being replaced is found on the horizontal axis, and the corresponding percentage of surviving freezers is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. Then, the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For example, assume a freezer being replaced is 22 years old (the estimated useful life). The corresponding percent surviving value is approximately 50 percent. Half of 50 percent is 25 percent. The age corresponding to 25 percent on the chart is approximately 27 years. Therefore, the RUL of the freezer being replaced is 27 - 22 = 5 years.

⁴⁷² Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. <u>http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf</u>.

Energy Savings Algorithms

For the RUL time period:

$$kWh_{savings,ER} = kWh_{manf} - kWh_{ES}$$

Equation 140

For the remaining time in the EUL period., calculate annual savings as you would for a replaceon-burnout project:

$$kWh_{savings,ROB} = kWh_{baseline} - kWh_{ES}$$

Equation 141

Where:

 kWh_{manf} = 841 $kWh/Year^{473}$

Demand Savings Algorithms

To calculate demand savings for the early retirement of a freezer, a similar methodology is used as for replace-on-burnout installations, with separate savings calculated for the remaining useful life of the unit, and the remainder of the EUL as outlined in the section above.

For the RUL time period:

$$kW_{savings,ER} = \frac{kWh_{savings,ER}}{8,760 \ hrs} \times CF_{S/W}$$

Equation 142

For the remaining time in the EUL period, calculate annual savings as you would for a replaceon-burnout project:

$$kW_{savings,ROB} = \frac{kWh_{savings,ROB}}{8,760 \ hrs} \times CF_{S/W}$$

Equation 143

Annual deemed summer peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

⁴⁷³ This is the weighted average of adjusted annual unit energy consumption, a metric obtained from the MwEPA Refrigerator and Freezer Energy Rating Database (if from metering, substitute recorded value in lieu of this weighted average). Weights are calculated from the millions-of-households measurements obtained from RECS, (https://www.eia.gov/consumption/residential/data/2015/bc/php/bc3.6 php) corresponding to the year

^{(&}lt;u>https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6.php</u>) corresponding to the year range classifications of freezers greater than 15 years old (specifically, 15-to-19-years-old and 20-or-more-years-old). The oldest freezers for which we had data were from 1979.

Deemed Energy Savings Tables

Freezer type	Size	ROB savings (kWh)	ER savings (kWh)
Chest	Standard (≥ 7.75 ft³)	29	154
	Compact (< 7.75 ft ³)	22	163
Upright	Standard (≥ 7.75 ft³)	48	130
	Compact (< 7.75 ft ³)	32	151

Table 368. Freezers—Savings (kWh)

Deemed Summer Demand Savings Tables

Table 369. Freezers—Replace-on-Burnout—Summer Peak Demand Savings (kW)

Freezer type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Chest	Standard (≥ 7.75 ft ³)	0.004	0.004	0.004	0.004	0.004
	Compact (< 7.75 ft ³)	0.003	0.003	0.003	0.003	0.003
Upright	Standard (≥ 7.75 ft ³)	0.006	0.006	0.006	0.006	0.006
	Compact (< 7.75 ft ³)	0.004	0.004	0.004	0.004	0.004

Table 370. Freezers—Early Retirement—Summer Peak Demand Savings (kW)

Freezer type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Chest	Standard (≥ 7.75 ft ³)	0.020	0.019	0.019	0.019	0.019
	Compact (< 7.75 ft ³)	0.021	0.020	0.021	0.020	0.020
Upright	Standard (≥ 7.75 ft³)	0.017	0.016	0.016	0.016	0.016
	Compact (< 7.75 ft ³)	0.019	0.019	0.019	0.019	0.019

Deemed Winter Demand Savings Tables

Table 371. Freezers—Replace-on-Burnout—Winter Peak Demand Savings (kW)

Freezer type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Chest	Standard (≥ 7.75 ft ³)	0.003	0.003	0.003	0.003	0.003
	Compact (< 7.75 ft ³)	0.002	0.002	0.002	0.002	0.002
Upright	Standard (≥ 7.75 ft ³)	0.005	0.005	0.005	0.005	0.005
	Compact (< 7.75 ft ³)	0.003	0.003	0.003	0.003	0.003

Freezer type	Product class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Chest	Standard (≥ 7.75 ft³)	0.016	0.017	0.016	0.017	0.017
	Compact (< 7.75 ft ³)	0.017	0.018	0.017	0.018	0.018
Upright	Standard (≥ 7.75 ft³)	0.014	0.014	0.014	0.014	0.014
	Compact (< 7.75 ft ³)	0.016	0.017	0.016	0.016	0.017

Table 372. Freezers—Early Retirement—Winter Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 22 years based on the current DOE Final Rule standards for residential freezers.⁴⁷⁴

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Baseline type (new construction, replace-on-burnout, or early retirement)
- Manufacturer and model number
- Freezer type (upright or chest)
- Freezer size (standard, i.e., \geq 7.75 ft³, or compact, i.e., < 7.75 ft³)
- Photograph demonstrating functionality of existing equipment and/or customer responses to survey questionnaire documenting the condition of the replaced unit and their motivation for measure replacement for early retirement eligibility determination (early retirement only)
- The installer will provide documentation of proper disposal of freezers in accordance with applicable federal, state, and local regulations (early retirement only)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

⁴⁷⁴ Final Rule: Standards, Federal Register, 76 FR 57516 (Sept. 15, 2011) and associated Technical Support Document. <u>https://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=48f64e166fe3561666f871e521996e13&mc=true&node=se10.3.430_132&rgn=div8</u>. Download TSD at: <u>https://www.regulations.gov/document/EERE-2008-BT-STD-0012-0128</u>.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change		
v7.0	10/2019	TRM v7.0 origin.		
v8.0	10/2020	TRM v8.0 update. Updated early retirement age eligibility.		
v9.0	10/2021	TRM v9.0 update. Updated early retirement age eligibility.		
v10.0	10/2022	TRM v10.0 update. Updated early retirement age eligibility.		
v11.0	10/2023	TRM v10.0 update. Updated early retirement age eligibility.		

Table 373. Freezers—Revision History
2.5.7 Refrigerator/Freezer Recycling Measure Overview

TRM Measure ID: R-AP-RR Market Sector: Residential Measure Category: Appliance Recycling Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Early retirement Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves early retirement and recycling of an existing, full-size (7.75 ft³ or greater) refrigerator or combined refrigerator/freezer in a residential application. Savings represent the entire estimated energy consumption of the existing unit and are applicable over the estimated remaining life of the existing unit.

Eligibility Criteria

This measure applies to operable primary and secondary retired refrigerators/freezers. Recycling savings for this measure are limited to the removal of a working refrigerator/freezer from the electrical grid and differ from the savings specified in the ENERGY STAR Refrigerator replacement measure. The latter, which pertain to the direct replacement of a refrigerator and reflect the difference in energy consumption between new ENERGY STAR qualifying and standard efficiency models, may be claimed for the recycling of primary refrigerators/freezers that have been replaced if savings for that replacement were not already claimed in another energy efficiency program. To qualify, the customer must release the existing unit to the utility or utility representative to ensure proper disposal in accordance with applicable federal, state, and local regulations.

Baseline Condition

Without program intervention, the recycled refrigerator or refrigerator/freezer would have remained operable on the electrical grid. As a result, the baseline condition for early retirement programs is continued operation of the existing refrigerator.

High-Efficiency Condition

There is no efficiency standard for a recycling measure because the energy efficient action is the removal of an operable appliance, not—as with most demand-side management programs—the installation of a higher efficiency model.

Energy and Demand Savings Methodology

The basis for estimating energy savings is the annual energy consumption of the refrigerator or refrigerator/freezer being retired.

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings are calculated as follows:

Energ Savings
$$[\Delta kWh] = kWh_{existig} \times ISAF \times PUF$$

Equation 144

Where:

<i>kWh_{existing}</i>	=	Average annual energy consumption ⁴⁷⁵ (see Table 374)
ISAF	=	In situ adjustment factor ⁴⁷⁶ = 0.942
PUF	=	Part use factor ⁴⁷⁷ = 0.915

Table 374. Refrigerator/Freezer Recycling—Average Annual Energy Consumption

Tetal	Veet	kWh _{existing} by freezer configuration					
capacity (ft ³)	manufactured	Тор	Bottom	Side	Upright	Chest	
< 16.5	<u><</u> 2000	861	962	1,139	937	532	
	2001-2010	556	724	747	713	435	
	<u>></u> 2011	374	483	592	449	292	

⁴⁷⁵ ENERGY STAR Flip Your Fridge Calculator. https://www.energystar.gov/index.cfm?fuseaction=refrig.calculator.

⁴⁷⁶ The Cadmus Group, Inc. "Residential Retrofit High Impact Measure Evaluation Report". Prepared for California Public Utilities Commission Energy Division. February 8, 2010. Factor to account for variation between site conditions and controlled DOE testing conditions (90 °F test chamber, empty refrigerator and freezer cabinets, and no door openings). Appliances in warmer climate zones use more energy than those in cooler climate zones; utilized SCE data (highest percentage of warm climate projects) to best approximate Texas climate, p. 139-140.

⁴⁷⁷ Ibid. Factor to account for the number of refrigerators that were running, running part time, or not running at the time of recycling, p. 142-143 (weighted by representative utility survey participation, p. 117).

Tetal	Veer	kWh _{existing} by freezer configuration					
capacity (ft ³)	manufactured	Тор	Bottom	Side	Upright	Chest	
16.5-18.9	<u><</u> 2000	962	1,051	1,266	1,058	621	
	2001-2010	613	747	818	805	508	
	<u>></u> 2011	412	517	640	507	341	
19.0-21.4	<u><</u> 2000	1,031	1,110	1,329	1,138	680	
	2001-2010	651	762	854	866	557	
	<u>></u> 2011	438	539	664	545	373	
21.5-24.4	<u><</u> 2000	1,090	1,172	1,368	1,194	721	
	2001-2010	683	777	876	909	591	
	<u>></u> 2011	459	562	679	572	396	
<u>></u> 24.5	<u><</u> 2000	1,223	1,347	1,528	1,355	840	
	2001-2010	758	822	966	1,031	688	
	<u>></u> 2011	508	627	740	648	461	

Demand Savings Algorithms

Summer peak demand savings are calculated as follows:

Peak Demand Svings
$$[\Delta kW] = \frac{\Delta kWh}{AOH} \times CF_{S/W}$$

Equation 145

Where:

AOH=Annual operating hours = 8,760 hours $CF_{S/W}$ =Seasonal coincidence factor (see Table 375)

Table 375. Refrigerator/Freezer Recycling—Coincidence Factors⁴⁷⁸

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	1.112	1.099	1.108	1.100	1.081
Winter	0.929	0.966	0.924	0.941	0.966

⁴⁷⁸ See Volume 1, Appendix B.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

Based on the KEMA Residential Refrigerator Recycling Ninth Year Retention Study,⁴⁷⁹ the Estimated Useful Life of Refrigerator Recycling is 8 years, representing the assumed remaining useful life of the retired unit.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of refrigerators/freezers removed
- Year removed unit manufactured
- Total capacity (in cubic feet)
- Freezer configuration (top, bottom, side-by-side, upright, or chest)

⁴⁷⁹ KEMA, Inc. "Residential Refrigerator Recycling Ninth Year Retention Study." Prepared for Southern California Edison Company. July 22, 2004.

References and Efficiency Standards

Petitions and Rulings

• Docket No. 42212. Petition of El Paso Electric Company to Approve Revisions to the Deemed Savings for the Appliance Recycling Market Transformation program. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v2.1	1/30/2015	TRM v2.1 origin.
v3.0	4/10/2015	TRM v3.0 update. CF updated to align with new peak demand methodology.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter CFs.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated baseline energy consumption.
v9.0	10/2021	TRM v9.0 update. Correct deemed ranges for refrigerator volume.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.

Table 376. Refrigerator/Freezer Recycling—Revision History

2.5.8 ENERGY STAR[®] Air Purifiers Measure Overview

TRM Measure ID: R-AP-AP Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Replace-on-burnout, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR air purifier. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

This measure applies to floor, tabletop, and wall-mounted air purifiers/room air cleaners.

Baseline Condition

The baseline condition is the current federal standard Tier 1 requirements, effective August 9, 2023, with compliance enforced as of December 31, 2023. The standard will increase to Tier 2 requirements on December 31, 2025.⁴⁸⁰

Smoke CADR	Tier 1 CADR/W	Tier 2 CADR/W
10–99	1.7	1.9
100–149	1.9	2.4
150+	2.0	2.9

Table 377. Air Purifiers—Federal Standard

⁴⁸⁰ DOE minimum efficiency standard for residential air cleaners. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=77</u>. <u>https://www.energy.gov/sites/default/files/2023-03/air-cleaners-ecs-dfr.pdf</u>.

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 2.0 Requirements for eligible room air cleaners effective October 17, 2020, and revised May 2022.⁴⁸¹ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Smoke CADR	Minimum CADR/W
10–99	1.9
100–149	2.4
150+	2.9

Table 378. Air Purifiers—ENERGY STAR Requirements

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator and the revised ENERGY STAR specification in Table 348.⁴⁸² Default baseline standby power and clean air delivery rate (CADR) efficiency (CADR/W) values were taken from the ENERGY STAR calculator. ENERGY STAR standby power, CADR, and CADR/W are averages from the ENERGY STAR qualified product listing. Baseline CADR is assumed to be equivalent to ENERGY STAR CADR.

This measure will be updated to comply with the latest available ENERGY STAR specification and appliance calculator. It will also periodically be updated to comply with the latest updates to the ENERGY STAR qualified product listing.

Energy Savings
$$[\Delta kWh] = (kWh_{baseline,OP} + kWh_{baseline,SB}) - (kWh_{ES,OP} + kWh_{ES,SB})$$

Equation 146

$$kWh_{baseline,OP} = \left(\frac{CADR_{baseline}}{\eta_{baseline}}\right) / 1,000 \times hours \times days$$

Equation 147

$$kWh_{baseline,SB} = (8,760 - hours \times days) \times \frac{W_{baseline,SB}}{1,000}$$

Equation 148

⁴⁸¹ ENERGY STAR Room Air Cleaners Final Version 2.0 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%202.0%20Room%20Ai</u> <u>r%20Cleaners%20Specification%20%28Rev.%20May%202022%29_0.pdf</u>.

⁴⁸² ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

$$kWh_{ES,OP} = \left(\frac{CADR_{ES}}{\eta_{ES}}\right)/1,000 \times hours \times days$$

Equation 149

$$kWh_{ES,SB} = (8,760 - hours \times days) \times \frac{W_{ES,SB}}{1,000}$$

Equation 150

Where:

kWh _{baseline,OP} =	=	Baseline/conventional operating energy usage
kWh _{baseline,SB}	=	Baseline/conventional standby energy usage
kWh _{ES,OP}	=	ENERGY STAR average operating energy usage
kWh _{ES,SB}	=	ENERGY STAR average standby energy usage
CADR _{baseline}	=	Baseline unit clean air delivery rate (cu ft/min), assume equivalent to $CADR_{ES}$
CADR _{ES}	=	ENERGY STAR unit clean air delivery rate (cu ft/min) (see Table 380)
η_{baseline}	=	Baseline clean air delivery efficiency = 1.0 cfm/W
η_{ES}	=	ENERGY STAR air delivery efficiency (cfm/W) (see Table 380)
hours	=	Average hours of operation per day = 16
days	=	Average days of operation per year = 365
W _{baseline} ,SB	=	Conventional model standby power = 1.0 W
W _{ES,SB}	=	ENERGY STAR model standby power = 0.6 W
1,000	=	Constant to convert from W to kW
8,760	=	Total hours per year

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{hours \times days} \times CF_{S/W}$$

Equation 151

Where:

 $CF_{S/W}$ = Seasonal peak coincidence factor (see Table 379)

Table 379. Air Purifiers—Coincidence Factors⁴⁸³

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.636	0.617	0.631	0.620	0.564
Winter	0.882	0.907	0.829	0.876	0.926

Deemed Energy Savings Tables

Table 380. Air Purifiers—Energy Savings (kWh)

Smoke CADR range (cu ft/min)	ENERGY STAR QPL Average Smoke CADR	ENERGY STAR QPL Average Smoke CADR/W	kWh savings
10–99	75	3.0	115
100–149	129	4.3	222
150–199	171	4.6	284
200–249	225	4.4	363
250–299	275	5.7	522
300+	375	5.5	699

Deemed Summer Demand Savings Tables

Table 381. Air Purifiers—Summer Peak Demand Savings (kW)

Smoke CADR range (cu ft/min)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
10–99	0.012	0.012	0.012	0.012	0.011
100–149	0.024	0.023	0.024	0.024	0.021
150–199	0.031	0.030	0.031	0.030	0.027
200–249	0.040	0.038	0.039	0.039	0.035
250–299	0.057	0.055	0.056	0.055	0.051
300+	0.076	0.074	0.076	0.074	0.068

⁴⁸³ See Volume 1, Section 4.

Deemed Winter Demand Savings Tables

Smoke CADR range (cu ft/min)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
10–99	0.017	0.018	0.016	0.017	0.018
100–149	0.034	0.034	0.032	0.033	0.035
150–199	0.043	0.044	0.040	0.043	0.045
200–249	0.055	0.056	0.052	0.054	0.058
250–299	0.079	0.081	0.074	0.078	0.083
300+	0.106	0.109	0.099	0.105	0.111

Table 382. Air Purifiers—Winter Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 9 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID RES-AirCleaner.⁴⁸⁴

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- ENERGY STAR certificate matching model number
- Smoke clean air delivery rate (CADR) in cu ft/min (cfm)
- Proof of purchase including date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

⁴⁸⁴ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Final Version 2.0 Requirements. Updated dust CADR references to refer to smoke CADR. Updated deemed savings ranges and values.
v11.0	10/2023	TRM v11.0 update. Updated baseline to Tier 1 federal standard.

Table 383. Air Purifiers—Revision History

2.5.9 ENERGY STAR[®] Pool Pumps Measure Overview

TRM Measure ID: R-AP-PP Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the replacement of a single-speed pool pump with an ENERGY STARcertified variable-speed or multi-speed pool pump.

Eligibility Criteria

This measure applies to all residential applications of in-ground pools or above-ground pools. Pools that serve multiple tenants in a common area are not eligible for this measure. Ineligible pump products include waterfall, integral cartridge filter, integral sand filter, storable electric spa, and rigid electric spa.⁴⁸⁵

Multi-speed pool pumps are an alternative to variable speed pumps. The multi-speed pump uses an induction motor that functions as two motors in one, with full-speed and half-speed options. Multi-speed pumps may enable significant energy savings. However, if the half-speed motor is unable to complete the required water circulation task, the larger motor will operate exclusively. Having only two speed-choices limits the ability of the pump motor to fine-tune the flow rates required for maximum energy savings.⁴⁸⁶ Therefore, multi-speed pumps must have a high-speed override capability to revert back to low speed after a period not to exceed 24 hours.

⁴⁸⁵ These product types are excluded by the ENERGY STAR specification. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.1%20Pool%20Pumps%20Final%20Specification_0.pdf</u>.

⁴⁸⁶ Hunt, A. and Easley, S., 2012, "Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings." Building America Retrofit Alliance (BARA), US DOE. May 2012. <u>http://www.nrel.gov/docs/fy12osti/54242.pdf</u>.

Baseline Condition

The baseline is assumed to be a new pool pump that is compliant with the current federal standard, effective July 19, 2021.⁴⁸⁷ Weighted energy factor (WEF) requirements are based on rated hydraulic horsepower (hhp).

Pump subtype	Size class	WEF	
Self-priming	Extra small (hhp ≤ 0.13)	WEF = 5.55	
(inground) pool umps	Small (hhp > 0.13 to < 0.711)	WEF = -1.30 x ln(hhp) + 2.90	
	Standard (hhp ≥ 0.711)	WEF = -2.30 x ln(hhp) + 6.59	
Non-self priming	Extra small (hhp ≤ 0.13)	WEF = 4.60	
(above ground) pool pumps	Standard size (hhp > 0.13)	WEF = -0.85 x ln(hhp) + 2.87	

Table 384. Baseline Condition—Federal Standard Effective July 19, 2021

High-Efficiency Condition

The high-efficiency condition is a 1 to 5 hp variable speed pump (VSP) or multi-speed pool pump that is compliant with the ENERGY STAR Final Version 3.1 Requirements for pool pumps effective July 19, 2021.⁴⁸⁸ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Additional optional efficiency standards are available, aligning with recommendations from the Consortium for Energy Efficiency (CEE) residential swimming pool pump specification, effective October 21, 2020.⁴⁸⁹ For all in-ground pumps, CEE Tier 1 matches the current federal standard, and CEE Tier 2 matches the current ENERGY STAR specification for in-ground standard size pumps. Additional savings are only specified for CEE tiers where there is an incremental efficiency improvement above the ENERGY STAR specification.

Compliance only needs to be verified against the CEE specification when claiming CEE savings that exceed the corresponding ENERGY STAR savings values. ENERGY STAR savings should be claimed for all pumps where CEE compliance is not verified and where there are no CEE savings specified.

⁴⁸⁷ Federal standard for dedicated-purpose pool pumps. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=67</u>.

⁴⁸⁸ ENERGY STAR Pool Pumps Final Version 3.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.1%20Pool%20Pumps%20Final%20Specification_0.pdf</u>.

⁴⁸⁹ CEE Residential Swimming Pool Pump Specification. <u>https://library.cee1.org/system/files/library/14404/CEE_ResSwimmingPoolPump_Specification_21Oct2_020.pdf</u>.

Table 385. ENERGY STAR Pool Pumps – Energy Efficiency Level

Pump Subtype	Size class	ENERGY STAR	CEE Tier 1	CEE Tier 2
Self-priming	Extra small (hhp ≤ 0.13)	WEF ≥ 13.40	-	-
(inground) pool pumps	Small (hhp > 0.13 to < 0.711)	WEF ≥ -2.45 x ln(hhp) + 8.40	WEF ≥ -1.30 x ln(hhp) + 4.95	WEF ≥ -2.83 x ln(hhp) + 8.84
	Standard (hhp ≥ 0.711)		WEF ≥ -2.30 x ln(hhp) + 6.59	WEF ≥ -2.45 x ln(hhp) + 8.40
Non-self priming	Extra small (hhp ≤ 0.13)	WEF ≥ 4.92	-	_
(above ground) pool pumps	Standard size (hhp > 0.13)	WEF ≥ -1.00 x ln(hhp) + 3.85	WEF ≥ -1.60 x ln(hhp) + 9.10	_

pumps/results.

390

⁴⁹⁰ The ENERGY STAR Pool Pump Savings Calculator, updated February 2013, can be found on the ENERGY STAR website at: https://www.energystar.gov/productfinder/product/certified-pool-

Texas Technical Reference Manual, Vol. 2 November 2023

Reseline numn flow rate [gal/min] (Table 386) _

kWh _{base}	_	$PFR_{base} \times 60 \times hours \times days$
	_	$WEF_{base} \times 1,000$

 $kWh_{ES} = \frac{V \times TO \times days}{WEF_{ES} \times 1,000}$

Equation 153

Where:

Where:

kWh_{base} = Baseline pool pump energy (kWh)

kWh_{ES} = ENERGY STAR variable speed pool pump energy (kWh)

DED.

Algorithms to calculate the above parameters are defined as:

Savings for this measure are based on methods and input assumptions from the ENERGY STAR Pool Pump Savings Calculator.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Pool Pump Savings Calculator with Texas selected as the applicable location, so Texas-specific assumptions were used.490

Energy Savings $[\Delta kWh] = kWh_{base} - kWh_{ES}$

Equation 152

Equation 154

V	=	Pool volume [gal] (Table 386)
ТО	=	<i>Turnovers per day, number of times the volume of the pool is run through the pump per day (Table 387)</i>
60	=	Constant to convert between minutes and hours
1,000	=	Constant to convert from W to kW

New pump HP	Reference HP	Reference HHP ⁴⁹²	Hours ⁴⁹³	PFR _{base} (gal/min)				
≤ 1.25	1.0	0.533	4.9	75.5000				
1.25 < hp ≤ 1.75	1.5	0.800	4.7	78.1429				
1.75 < hp ≤ 2.25	2.0	1.066	4.1	88.6667				
2.25 < hp ≤ 2.75	2.5	1.333	4.0	93.0910				
2.75 < hp ≤ 5	3.0	1.599	4.0	101.6667				

Table 386. Pool Pumps—Baseline Assumptions⁴⁹¹

Table 387. Pool Pumps—ENERGY STAR Assumptions⁴⁹⁴

New pump HP	V (gal)	Turnovers/day
≤ 1.25	22,000	1.0
1.25 < hp ≤ 1.75		
1.75 < hp ≤ 2.25		
2.25 < hp ≤ 2.75		
2.75 < hp ≤ 5		

Demand Savings Algorithms

$$Peak \ Demand \ Savings \ [\Delta kW] = \frac{kWh_{base} - kWh_{ES}}{hours} \times \frac{CF_{S/W}}{days}$$

Equation 155

⁴⁹¹ Conventional pump PFR and EF values are taken from pump curves found in the ENERGY STAR Pool Pump Savings Calculator. Note: input assumptions will be updated once calculator has been updated for compliance with the current specification.

⁴⁹² Hhp not available in ENERGY STAR calculator. Assumed hhp calculated as follows: Ref. horsepower x AF. AF = 0.533 based on ratio of hhp to hp from ENERGY STAR qualified product listing. Accessed 8/11/2023.

⁴⁹³ The daily average operating hours for conventional single-speed pumps, based on 2014 residential pool pump program survey results from CenterPoint Energy.

⁴⁹⁴ ENERGY STAR values are taken from default inputs and pump curves found in the ENERGY STAR Pool Pump Savings Calculator. Note: input assumptions will be updated once calculator has been updated for compliance with the current specification.

Where:

$CF_{S/W}$ = Seasonal peak coincidence factor (Table 388)

Table 388. Pool Pumps—Coincidence Factors⁴⁹⁵

Climate zone	Summer CF	Winter CF
Zone 1: Amarillo	0.258	-0.002
Zone 2: Dallas	0.329	0.025
Zone 3: Houston	0.276	0.108
Zone 4: Corpus Christi	0.266	0.036
Zone 5: El Paso	0.497	-0.143

Deemed Energy Savings Tables

New pump hp	Inground	Above ground				
ENERGY STAR						
≤ 1.25	1,371	587				
1.25 < hp ≤ 1.75	235	657				
1.75 < hp ≤ 2.25	262	707				
2.25 < hp ≤ 2.75	332	852				
2.75 < hp ≤ 5	509	1,229				
CEE Tier 1						
≤ 1.25	_	1,585				
1.25 < hp ≤ 1.75	_	1,779				
1.75 < hp ≤ 2.25	_	1,935				
2.25 < hp ≤ 2.75	_	2,176				
2.75 < hp ≤ 5	_	2,642				
	CEE Tier 2					
≤ 1.25	1,423	_				
1.25 < hp ≤ 5	_	_				

Table 389. Pool Pumps—Energy Savings (kWh)⁴⁹⁶

⁴⁹⁵ Coincidence factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from the US Department of Energy's Building America B10 Benchmark load profiles for pool pumps. The profile used to determine coincidence factors is calculated as the difference of single speed and variable speed profiles. Summer profiles include April through September and winter profiles include October through March.

⁴⁹⁶ The results in this table may vary slightly from results produced by the ENERGY STAR calculator because of rounding of default savings coefficients throughout the measure and pool volume.

Deemed Summer Demand Savings Tables⁴⁹⁷

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
		ENERGY STA	R			
≤ 1.25	0.198	0.252	0.212	0.204	0.381	
1.25 < hp ≤ 1.75	0.035	0.045	0.038	0.036	0.068	
1.75 < hp ≤ 2.25	0.045	0.057	0.048	0.046	0.087	
2.25 < hp ≤ 2.75	0.059	0.075	0.063	0.060	0.113	
2.75 < hp ≤ 5	0.090	0.115	0.096	0.093	0.173	
		CEE Tier 1				
All sizes	_	_	_	_	_	
CEE Tier 2						
≤ 1.25	0.206	0.262	0.220	0.212	0.396	
1.25 < hp ≤ 5	_	_	_	_	_	

Table 390. Pool Pumps—Summer Peak Demand Savings (kW) for Inground Pools

Table 391. Pool Pumps—Summer Peak Demand Savings (kW) for Above Ground Pools

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
		ENERGY S	STAR			
≤ 1.25	0.085	0.108	0.091	0.087	0.163	
1.25 < hp ≤ 1.75	0.099	0.126	0.106	0.102	0.190	
1.75 < hp ≤ 2.25	0.122	0.155	0.130	0.126	0.235	
2.25 < hp ≤ 2.75	0.151	0.192	0.161	0.155	0.290	
2.75 < hp ≤ 5	0.218	0.277	0.233	0.224	0.418	
CEE Tier 1						
≤ 1.25	0.229	0.291	0.245	0.236	0.441	
1.25 < hp ≤ 1.75	0.268	0.341	0.287	0.276	0.516	
1.75 < hp ≤ 2.25	0.334	0.425	0.357	0.344	0.643	
2.25 < hp ≤ 2.75	0.385	0.490	0.412	0.396	0.741	
2.75 < hp ≤ 5	0.468	0.595	0.500	0.481	0.900	

497 Ibid.

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
CEE Tier 2						
All sizes	_	_	_	_	_	

Deemed Winter Demand Savings Tables

Table 392. Pool Pumps-	-Winter Peak Demand	l Savings (kW)	for Inground Pools
		. oa	iei ingreana i eeie

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso				
		ENERGY ST	AR						
≤ 1.25 -0.001 0.019 0.083 0.027 -0.4									
1.25 < hp ≤ 1.75	0.000	0.003	0.015	0.005	-0.020				
1.75 < hp ≤ 2.25	0.000	0.004	0.019	0.006	-0.025				
2.25 < hp ≤ 2.75	0.000	0.006	0.025	0.008	-0.032				
2.75 < hp ≤ 5	-0.001	0.009	0.038	0.012	-0.050				
		CEE Tier 1	l						
All sizes	_	_	_	_	_				
CEE Tier 2									
≤ 1.25	-0.001	0.020	0.086	0.029	-0.114				
1.25 < hp ≤ 5	_	-	_	_	_				

Table 393. Pool Pumps—Peak Demand Savings (kW) for Above Ground Pools

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso					
	ENERGY STAR									
≤ 1.25	-0.001	0.008	0.036	0.012	-0.047					
1.25 < hp ≤ 1.75	-0.001	0.010	0.042	0.014	-0.055					
1.75 < hp ≤ 2.25	-0.001	0.012	0.051	0.017	-0.067					
2.25 < hp ≤ 2.75	-0.001	0.014	0.063	0.021	-0.083					
2.75 < hp ≤ 5	-0.001	0.021	0.091	0.030	-0.120					

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso					
	CEE Tier 1									
≤ 1.25	-0.001	0.022	0.096	0.032	-0.127					
1.25 < hp ≤ 1.75	-0.002	0.026	0.112	0.037	-0.148					
1.75 < hp ≤ 2.25	-0.002	0.032	0.140	0.046	-0.185					
2.25 < hp ≤ 2.75	-0.002	0.037	0.162	0.053	-0.213					
2.75 < hp ≤ 5	-0.003	0.045	0.196	0.065	-0.259					
CEE Tier 2										
All sizes	_	_	-	_	-					

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

ENERGY STAR Pool Pump Savings Calculator, updated May 2020, can be found on the ENERGY STAR website at <u>https://www.energystar.gov/productfinder/product/certified-pool-pumps/results</u>.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID OutD-PoolPump.⁴⁹⁸

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly include the below.

For all projects collect:

- Climate zone or county
- Unit quantity
- Manufacturer and model number of new pool pump
- ENERGY STAR certificate matching model number
- Weighted energy factor of new pool pump
- Rated hydraulic horsepower of new pool pump

⁴⁹⁸ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

- Rated horsepower of new pool pump
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or other pre-approved method of installation verification

For a significant sample of projects where attainable (e.g., those projects that are selected for inspection, not midstream or retail programs):

- Items listed for all projects above
- Decision/action type: early retirement, replace-on-burnout, or new construction
- Rated horsepower of existing pool pump
- Existing and new pool pump operating hours

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 394. Pool Pumps—Revision History

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 origin.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updated eligibility to include above ground pool pumps now eligible for ENERGY STAR certification. Acknowledged the forthcoming ENERGY STAR v2.0.
v8.0	10/2020	TRM v8.0 update. Incorporated ENERGY STAR v2.0 updated deemed savings.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference and documentation requirements.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Final Version 3.1 Requirements. Updated savings coefficient definitions.
v11.0	10/2023	TRM v11.0 update. Updated baseline to current federal standard. Added new savings tiers. Updated documentation requirements.

2.5.10 Advanced Power Strips Measure Overview

TRM Measure ID: R-AP-PS Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings values Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the installation of a multi-plug advanced power strip (APS) with the ability to automatically disconnect specific loads depending on the power draw of a specified, or "master," load.

For a Tier 1 APS, a load sensor in the strip disconnects power from the control outlets when the master power draw is below a certain threshold. This feature allows for a reduction of power draw from peripheral consumer electronics, which usually maintain some load even when in the off or standby position. Therefore, when the master device (e.g., television) is turned off, the power supply is cut to other related equipment (e.g., set-top boxes, speakers, video game consoles).

A Tier 2 APS uses an external sensor paired with a configurable countdown timer to manage both active and standby power loads for controlled devices in a complete system. A Tier 2 APS may operate either with or without a master control socket. Those without a master control socket sense power of all devices connected to the controlled sockets, while those with a master control socket sense power for the device connected to the master control socket. The external sensor of a Tier 2 APS may use an infrared-only sensor, or it may use a "multi-sensor," which detects both infrared (IR) remote control signals and motion to determine device inactivity and deliver additional savings as compared to a Tier 1 APS. Both versions of external sensors use IR filtering to prevent inappropriate switching events that may have otherwise resulted from natural interference, such as sunlight or CFL light bulbs.

Eligibility Criteria

This measure applies to all residential applications. For Tier 2 applications, the APS must control at least two audiovisual devices.

Baseline Condition

The baseline condition is assumed to be uncontrolled peripheral loads, each plugged into a traditional surge protector or wall outlet.

High-Efficiency Condition

The high-efficiency condition is peripheral loads controlled by a Tier 1 or Tier 2 APS.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Savings were developed based on reported plug load electricity consumption and hourly use data. A set of home entertainment and home office peripheral equipment and related performance data are presented in the following table. "Daily Standby Hours" and "Daily Off Hours" represent the average number of hours the device is left in standby or off mode. For each device, a weighted watt per hour value is calculated based on projected watts consumed in either mode.

There are three savings paths available for Tier 1. Savings can be estimated by:

- 1. Complete system type (home entertainment or home office)
- 2. Per APS for an average complete system if the type is unknown
- 3. Per individual peripheral device

Tier 2 savings are determined using the average component uses for a complete system and an energy reduction percentage.

System type	Peripheral device	Daily standby hours	Daily off hours	Standby power (W)	Off power (W)	Weighted W/hr	Annual APS hours
Home	Audio equipment: AV receiver	0.0	18.0	19.2	3.1	3.1	6,570
entertainment	Audio equipment: Speakers	0.0	18.0	3.0	0.0	0.0	6,570
	Audio equipment: Subwoofer	0.0	18.0	7.8	0.6	0.6	6,570
	Media player: Blu-ray	2.5	20.8	7.0	0.1	0.8	8,505
	Media player: DVD	2.5	20.8	5.0	2.0	2.3	8,505
	Media player: DVD-R	2.5	20.8	7.0	3.0	3.4	8,505
	Media player: DVD/VCR	2.5	20.4	8.0	4.0	4.4	8,359
	Media player: VCR	2.2	21.4	6.0	3.0	3.3	8,614
	Set-top box: Cable	0.0	16.5	25.0	16.0	16.0	6,023
	Set-top box: Cable with DVR	0.0	16.5	45.0	43.0	43.0	6,023
	Set-top box: Satellite	0.0	15.1	10.0	15.0	15.0	5,512
	Set-top box: Satellite with DVR	0.0	15.1	27.0	28.0	28.0	5,512
	Set-top box: Stand-alone DVR	0.0	18.3	27.0	27.0	27.0	6,680
	Television: CRT	0.0	18.7	5.3	1.6	1.6	6,826
	Television: LCD	0.0	18.7	2.2	0.5	0.5	6,826
	Television: Plasma	0.0	18.7	0.9	0.6	0.6	6,826
	Television: Projection	0.0	18.7	4.4	7.0	7.0	6,826
	Video game console: Nintendo Wii	1.5	21.4	10.5	1.9	2.5	8,359
	Video game console: Wii U	1.5	21.4	34.0	0.4	2.6	8,359
	Video game console: PlayStation 2	1.5	21.4	17.0	0.2	1.3	8,359

Table 395. APS—Peripheral Watt Consumption Breakdown⁴⁹⁹

⁴⁹⁹ Derived from New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report." August 2011.

System type	Peripheral device	Daily standby hours	Daily off hours	Standby power (W)	Off power (W)	Weighted W/hr	Annual APS hours
Home	Video game console: PlayStation 3	1.5	21.4	152.9	1.1	11.0	8,359
entertainment	Video game console: PlayStation 4	1.5	21.4	137.0	6.4	14.9	8,359
	Video game console: XBOX	1.5	21.4	68.0	2.0	6.3	8,359
	Video game console: XBOX 360	1.5	21.4	117.5	3.1	10.6	8,359
	Video game console: XBOX One	1.5	21.4	112.0	11.9	18.4	8,359
Home office	Computer: Desktop	4.1	16.7	11.6	3.3	4.9	7,592
	Computer: Laptop	4.1	16.7	7.6	4.4	5.0	7,592
	Computer monitor: CRT	2.4	16.5	7.6	1.5	2.3	6,899
	Computer monitor: LCD	2.4	16.5	1.9	1.1	1.2	6,899
	Computer speakers	0.0	18.7	3.7	2.3	2.3	6,826
	Copier	0.0	23.5	2.8	1.5	1.5	8,578
	Fax machine: Inkjet	0.5	23.3	6.0	5.3	5.3	8,687
	Fax machine: Laser	0.5	23.3	5.3	2.2	2.3	8,687
	Printer: Inkjet	4.4	19.5	2.5	1.3	1.5	8,724
	Printer: Laser	4.4	19.5	9.0	3.3	4.3	8,724
	Scanner	0.0	23.5	3.6	2.1	2.1	8,578

Energy Savings Algorithms

Tier 1 APS

Energy savings for a Tier 1 APS in use for home entertainment or home office are calculated using the following algorithm, where kWh saved is calculated and summed for all peripheral devices.

Energy Savings
$$[\Delta kWh] = \sum \frac{W_i \times H_i}{1,000} \times ISR$$

Equation 156

Where:

W	=	Weighted watts per hour consumed in standby/off mode for each peripheral device (see Table 395)
Н	=	Annual hours per year controlled by APS (see Table 395)
1,000	=	Constant to convert from W to kW
ISR	=	In-service rate or the percentage of units rebated that are installed, see Table 396

Tier 2 APS

Energy savings for a Tier 2 APS are calculated using the average household home entertainment and home office usages, multiplied by an assumed energy reduction percentage.

 $\Delta kWh_{Home\ Entertainment} = kWh_{TV} \times ERP \times ISR$

Equation 157

 $\Delta kWh_{Home \ Office} = kWh_{Comp} \times ERP \times ISR$

Equation 158

$$\Delta kWh_{Unspecified} = \frac{kWh_{TV} + kWh_{Comp}}{2} \times ERP \times ISR$$

Equation 159

Where:

 kWh_{TV} = Average annual energy consumption of Tier 2 qualifying TV systems; default = 602.8 kWh^{500}

⁵⁰⁰ New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011. Page 30.

kWh _{Comp}	=	Average annual energy consumption of Tier 2 qualifying computer
		systems; default = 197.9 kWh ⁵⁰¹

ERP = Energy reduction percentage (default =
$$47.5\%^{502}$$
)

Table 396. APS—In-Service Rates by Program Type

Program type	ISR
All ⁵⁰³	0.83

Demand Savings Algorithms

Tier 1 and Tier 2 APS

Demand savings for a Tier 1 APS in use for a home entertainment system or home office are calculated using the following algorithm, where kWh saved is calculated and summed for all peripheral devices. Demand savings for a Tier 2 APS are calculated using the average household home office and home entertainment center usages, multiplied by an assumed energy reduction percentage.

Peak Demand Savings
$$[\Delta kW] = \sum \frac{\Delta kWh}{hours} \times CF_{S/W}$$

Equation 160

Where:

- hours = Annual hours per year controlled by APS (see Table 395 for Tier 1 APS; assume 4,380 for Tier 2 APS^{504})
- $CF_{S/W}$ = Seasonal peak coincidence factor (see Table 397)⁵⁰⁵

Table 397. APS—Coincidence Factors⁵⁰⁶

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.33	0.43	0.36	0.30	0.66
Winter	0.89	0.88	0.86	0.85	0.87

⁵⁰¹ New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011. Page 30.

⁵⁰² Average of ERP from Northeast Energy Efficiency Partnerships (NEEP), "Case Study: Tier 2 Advanced Power Strips and Efficiency Programs". April 2015.

⁵⁰³ MidAmerican Energy Company & Tetra Tech "Residential Assessment Impact and Process Evaluation FINAL". December 22, 2020, APPENDIX B: IN-SERVICE RATES ANALYSIS, p. 47.

⁵⁰⁴ Estimated based on assumption that approximately half of savings are during active hours (assumed to be 5.3 hours/day, or 1,936 hours/year) and half during standby hours (8,760-1,936 = 6,824 hours/year). The resulting weighted average is 4,380 hours/year.

⁵⁰⁵ Derived using Electric Power Research Institute (EPRI) End Use Load Shapes for Residential TV and PC. <u>http://loadshape.epri.com/enduse</u>.

⁵⁰⁶ See Volume 1, Section 4.

Deemed Energy Savings Tables

Refer to Table 398 and Table 399. The savings presented in these tables must be adjusted by applying the program-specific ISR values specified in Table 396.

Deemed Summer Demand Savings Tables

Refer to Table 398 and Table 399. The savings presented in these tables must be adjusted by applying the program-specific ISR values specified in Table 396Table 18.

Deemed Winter Demand Savings Tables

Refer to Table 398 and Table 399. The savings presented in these tables must be adjusted by applying the program-specific ISR values specified in Table 396.

				-		-					
	kWb		Summer kW savings				Winter kW savings				
System type	savings	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Home entertainment ⁵⁰⁸	269.9	0.0132	0.0174	0.0143	0.0119	0.0265	0.0358	0.0354	0.0345	0.0342	0.0348
Home office509	87.1	0.0037	0.0049	0.0041	0.0034	0.0075	0.0101	0.0100	0.0098	0.0097	0.0098
Upstream/midstream	178.5	0.0084	0.0112	0.0092	0.0077	0.0170	0.0230	0.0227	0.0221	0.0219	0.0223

Table 398. APS—Tier 1 Unadjusted Savings Before Applying ISR⁵⁰⁷

Table 399. APS—Tier 2 Unadjusted Savings Before Applying ISR⁵¹¹

	kWh savings	Summer kW savings			Winter kW savings						
System type		Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Home entertainment	286.3	0.021	0.028	0.023	0.019	0.043	0.058	0.058	0.056	0.056	0.057
Home office	94.0	0.007	0.009	0.008	0.006	0.014	0.019	0.019	0.018	0.018	0.019
Upstream/midstream	190.2	0.014	0.019	0.015	0.013	0.029	0.039	0.038	0.037	0.037	0.038

⁵⁰⁷ Apply in-service rate to adjust savings for specific program delivery type.

⁵⁰⁸ Assuming audio equipment: AV receiver, media player: average, set-top box: average, and video game console: average.

⁵⁰⁹ Assuming computer: desktop, computer monitor: LCD, computer speakers, and printer: average.

⁵¹⁰ Average of home entertainment and home office system averages.

⁵¹¹ Apply in-service rate to adjust savings for specific program delivery type.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years for a Tier 1 APS, according to the 2011 NYSERDA Advanced Power Strip Research Report.⁵¹² While Tier 2 APS is not covered by the NYSERDA report, assume the same 10-year EUL for Tier 2 APS.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- APS type (Tier 1 or Tier 2)
- System type (home entertainment, home office, unspecified)
- Proof of purchase including date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

⁵¹² New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011. Page 30.

Document Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. Updated savings with current coincidence factors.
v10.0	10/2022	TRM v10.0 update. Corrected typos in deemed savings tables from TRM v9.0 update.
v11.0	10/2023	TRM v11.0 update. Added in-service rates.

Table 400. APS—Revision History

2.5.11 ENERGY STAR[®] Electric Vehicle Supply Equipment

TRM Measure ID: R-AP-EV Market Sector: Residential Measure Category: Appliance Applicable Business Types: Single-family, manufactured Fuels Affected: Electricity Decision/Action Type: Retrofit, new construction Program Delivery Type: Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to the installation of ENERGY STAR qualified Level 2 electric vehicle supply equipment (EVSE) at a residential site. EVSE is the infrastructure that enables plug-in electric vehicles (PEV) to charge onboard batteries. Level 2 EVSE require 240-volt electrical service. This measure provides deemed savings for the energy efficiency improvement of an ENERGY STAR EVSE over a standard or non-ENERGY STAR EVSE.

Eligibility Criteria

Eligible equipment includes an ENERGY STAR qualified Level 2 EVSE installed at a residence. The EVSE may be installed for use on either an all-battery electric vehicle (BEV) or a plug-in hybrid electric vehicle (PHEV). Multifamily buildings should use the commercial EVSE measure.

Baseline Condition

The baseline condition is a non-ENERGY STAR qualified Level 2 EVSE.

High-Efficiency Condition

The high-efficiency EVSE is a Level 2 EVSE compliant with ENERGY STAR Final Version 1.1 specification for eligible EVSE, effective March 31, 2021.⁵¹³ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

⁵¹³ ENERGY STAR EVSE Final Version 1.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20V1.1%20DC%20EVSE%20Final%20Specification_0.pdf</u>.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Savings for EVSE come from efficiency gains of the ENERGY STAR equipment during operating modes when the vehicle is plugged in but not charging and when not plugged in. Deemed savings are calculated according to the following algorithms.

Demand Savings Algorithms

$$Peak Demand Savings [\Delta kW] = \frac{\Delta kWh \times HCF \times DCF}{days_c \times hours_{p,c}}$$

Equation 161

Where:

∆kWhss	=	Steady state energy savings (Table 402)
HCF	=	Hourly coincidence factor (Table 401)
DCF	=	Daily coincidence factor ⁵¹⁴ = 0.88
days₀	=	Number of charging days = 321
hours _{p,c}	=	Hours per day vehicle is plugged in and charging = 2.4 hr 515

Table 401. EVSE—Coincidence Factors⁵¹⁶

Climate zone	Summer	Winter	
Zone 1: Amarillo	0.044	0.058	
Zone 2: Dallas	0.040	0.053	
Zone 3: Houston	0.043	0.041	
Zone 4: Corpus Christi	0.042	0.059	
Zone 5: El Paso	0.033	0.085	

Deemed Energy Savings Tables

Table 402 presents the deemed energy savings per EVSE. Networked chargers refer to EVSE that are connected remotely to a larger network and are part of an infrastructure system of connected chargers.

⁵¹⁴ Idaho National Lab (INL) EV Project, June 2015, "Characterize the Demand and Energy Characteristics of Residential Electric Vehicle Supply Equipment," page 6. Eighty-eight percent of PEV owners charge every day.

⁵¹⁵ INL, page 5. A vehicle plugged in for 11.7 hours and charging for 2.4 hours leaves 9.3 hours when it is plugged in and not charging.

⁵¹⁶ Probability weighted peak load factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from 3 studies: CCET Wind Integration in ERCOT, Avista Utilities Semi-Annual Report on Electric Vehicle Supply, and Xcel CO EVCS Pilot.

EVSE type	Steady state charging (kWh)	Standby mode (kWh)	Total savings (kWh)	
Non-networked charger	10	22	40	
Networked charger	10	53	71	

Table 402. EVSE—Energy Savings (kWh)⁵¹⁷

Deemed Summer and Winter Demand Savings Tables

Table 403 presents the deemed summer and winter peak kW savings per EVSE.

Table 403. EVSE—Summer/Winter Peak Demand Savings (kW)⁵¹⁸

Climate Zone	Summer	Winter	
Zone 1: Amarillo	0.0009	0.0012	
Zone 2: Dallas	0.0008	0.0011	
Zone 3: Houston	0.0009	0.0008	
Zone 4: Corpus Christi	0.0009	0.0012	
Zone 5: El Paso	0.0007	0.0017	

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for an EVSE is assumed to be 10 years.⁵¹⁹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

• Climate zone or county

https://www.energystar.gov/sites/default/files/asset/document/Electric_Vehicle_Scoping_Report.pdf.

⁵¹⁷ ENERGY STAR Market and Industry Scoping Report Electric Vehicle Supply Equipment (EVSE), September 2013.

⁵¹⁸ Demand savings are only presented for steady state charging because those savings are higher than demand for plugged-in standby mode.

⁵¹⁹ US Department of Energy Vehicle Technologies Office, November 2015, "Costs Associated with Non-Residential Electric Vehicle Supply Equipment" p. 21. https://afdc.energy.gov/files/u/publication/evse cost report 2015.pdf.

- Manufacturer and model number
- EVSE type (networked, non-networked)
- ESVE quantity
- ENERGY STAR certificate matching EVSE model number
- Vehicle year, make, and model (if available)
- Estimated number of miles driven per day (if available)

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. Updated deemed savings tables
v9.0	10/2021	TRM v9.0 update. Updated documentation requirements.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Final Version 1.1 Requirements. Updated savings calculation assumptions, deemed savings, and documentation requirements.
v11.0	10/2023	TRM v11.0 update. Updated algorithm with days coefficient. Updated documentation requirements.

Table 404. EVSE—Revision History

2.5.12 Induction Cooking

TRM Measure ID: R-AP-IC Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

Residential cooking appliances include ovens, cooktops, and full ranges. A full range consists of an oven with a built-in cooktop. An induction range is an electric oven with a built-in induction cooktop.

Induction technology works on the principle of magnetic induction, where excited eddy currents in ferromagnetic cookware within the presence of an oscillating magnetic field dissipate heat through the Joule effect. This heat is directly generated by the cookware and is transmitted to the food within it, lessening thermal condition heat loss between the heating element and the cookware. Induction cooktops include a switching-power electronics circuit that delivers high-frequency current to a planar coil of wire embedded in the cooking surface. The cookware is magnetically coupled to the coil by the oscillating magnetic field. Current flows in the cooking vessel due to the low resistance of the metal. Resistance is a function of permeability and resistivity of the cookware as well as the frequency of excitation. Typical induction cooktops operate at switching frequency between 25 kHz and 50 kHz, which restricts coupling to ferromagnetic cookware such as cast iron, and some alloys of stainless steel.⁵²⁰

According to manufacturers, induction cooktops heat food faster, are easier to clean, are less likely to burn those using them, and have a higher cooking efficiency than electric resistance cooktops.

Eligibility Criteria

This measure requires the installation of an electric range with an induction cooktop or a standalone induction cooktop in a residential application. This measure assumes the use of small cookware typical of residential applications.

⁵²⁰ Sweeney, M., J. Dols, B. Fortenbery, and F. Sharp (EPRI), "Induction Cooking Technology Design and Assessment." Proceedings of the 2014 ACEEE Summer Study on Energy Efficiency in Buildings, p. 9-370. <u>https://www.aceee.org/files/proceedings/2014/data/papers/9-702.pdf</u>.
Baseline Condition

The baseline condition is defined as an electric range with electric resistance cooktop or a standalone electric resistance cooktop. This measure assumes a default of four burners.

Number of burners	Electric cooktop baseline kWh
0	84
1	89
2	95
3	101
4	106
5	112
6	118
7+	124

Table 405. Induction Cooking—Baseline Electric Resistance Cooktop Energy Consumption⁵²¹

High-Efficiency Condition

The high efficiency condition is defined as an electric range with an induction cooktop or a standalone induction cooktop.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings are calculated as the difference between the baseline and high-efficiency condition unit energy consumption (UEC). These exclude HVAC interactive effects or savings due to reduced kitchen hood consumption. Range oven cooking efficiency varies by cooktop type. Ranges with electric resistance and induction cooktops both have electric resistance oven components. Therefore, baseline and high-efficiency condition oven cooking efficiencies are equivalent and are excluded from the savings calculation.

Energy Savings $[\Delta kWh] = UEC_{base} - UEC_{IC}$

Equation 162

⁵²¹ "Plug Loads and Lighting Modeling," Codes and Standards Enhancement Initiative (CASE). 2016 California Building Energy Efficiency Standards. June 2016. Table 35. <u>https://www.caetrm.com/media/reference-documents/2016_T24CASE_Report_-</u> <u>Plug Load and Ltg Modeling - June 2016.pdf</u>.

$$UEC_{IC} = UEC_{base} \times \frac{CE_{base}}{CE_{IC}}$$

Equation 163

UEC _{base}	=	Baseline annual unit energy consumption [kWh]; see Table 405
UEC _{IC}	=	Induction cooking annual unit energy consumption [kWh]
CE _{base}	=	Baseline cooking efficiency = 75 percent ⁵²²
CEIC	=	Induction cooking efficiency = 85 percent ⁵²³

Summer Demand Savings Algorithms

Peak Demand Savings $[\Delta kW] = \frac{kWh_{savings}}{8,760} \times CF_{S/W}$

Equation 164

8,760	=	Total hours per year
CF _{S/W}	=	Seasonal peak coincidence factor (Table 406)

Table 406. Induction Cooking—Coincidence Factors⁵²⁴

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.003	0.003	0.003	0.003	0.002
Winter	0.009	0.008	0.007	0.008	0.010

⁵²² "2021-2022 Residential Induction Cooking Tops," ENERGY STAR. <u>https://www.energystar.gov/about/2021_residential_induction_cooking_tops#:~:text=The%20per%20u</u> <u>nit%20efficiency%20of,times%20more%20efficient%20than%20gas</u>.

⁵²³ Ibid.

⁵²⁴ Calculated according to TX TRM Volume 1, Section 4 using data from the US DOE Building America B10 Benchmark load profiles for cooking equipment. Summer profiles include April through September, and winter profiles include October through March. <u>https://www.energy.gov/eere/buildings/building-america-analysis-spreadsheets</u>.

Deemed Energy Savings Tables

For all applications, this measure assumes a default value of four burners.⁵²⁵

Table 407. Induction Cooking—Energy Savings (kWh)

Number of burners	kWh savings	
4	12	

Deemed Summer Demand Savings Tables

For all applications, this measure assumes a default value of four burners.

Number of burners	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
4	0.000004	0.000004	0.000004	0.000004	0.000003

Deemed Winter Demand Savings Tables

For all applications, this measure assumes a default value of four burners.

Table 409. Induction Cooking—Winter Peak Demand Savings (kW)

Number of burners	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
4	0.000013	0.000011	0.000010	0.000011	0.000014

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

⁵²⁵ Savings for 0–7+ burners only vary from 10–15 kWh.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an induction cooktop is 16 years based on the average lifetime specified for electric cooktops in the 2016 DOE life-cycle cost tool for residential cooking products.⁵²⁶

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Decision/action type (new construction, retrofit)
- Baseline unit type (electric range with electric resistance cooktop, standalone electric resistance cooktop)
- New unit type (electric range with induction cooktop, standalone induction cooktop)
- Manufacturer and model number
- Unit quantity
- Burner quantity
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

 ⁵²⁶ US Department of Energy (DOE), Energy Efficiency and Renewable Energy Office (EERE). 2016 SNOPR Analytical Tools: Life-Cycle Cost and Payback Period Analysis Spreadsheet.
"Cooking_Pds_LCC_SNOPR_DOE_2016_publication.xlsm." Dockett EERE-2014-BT-STD-0005.

Document Revision History

TRM version	Date	Description of change
v10.0	10/2022	TRM v10.0 origin.
v11.0	10/2023	TRM v11.0 update. Updated documentation requirements.

Table 410. Induction Cooking—Revision History