Public Utility Commission of Texas

Texas Technical Reference Manual Version 1 Volume 3: Nonresidential Measures Guide for PY2014 Implementation

i Nonresidential Table of Contents

Public Utility Commission of Texas

Texas Technical Reference Manual Version 1 Volume 3: Nonresidential Measures Guide for PY2014 Implementation

Last Revision Date: December 13, 2013

www.tetratech.com

Table of Contents

1.	Intr	oduction	1-1
2.	No	nresidential Measures	2-3
	2.1	Nonresidential: Lighting	2-3
		2.1.1 Lamps and Fixtures Measure Overview	2-3
		2.1.2 Lighting Controls Measure Overview	2-16
	2.2	Nonresidential: HVAC	2-21
		2.2.1 Split System/Single Packaged Heat Pumps and Air Conditioners Measure Overview	2-21
		2.2.2 HVAC Chillers Measure Overview	2-38
		2.2.3 Packaged Terminal Air Conditioners, Heat Pumps and Room Air Conditioners Measure Overview	2-53
		2.2.4 HVAC Variable Frequency Drive (VFD) on Air Handler Unit (AHU) Supply Fans Measure Overview	2-60
	2.3	Nonresidential: Building envelope	2-72
		2.3.1 ENERGY STAR [®] Roofs Measure Overview	2-72
		2.3.2 Window Film Measure Overview	2-81
	2.4	Nonresidential: Food Service Equipment	2-87
		2.4.1 High Efficiency Combination Ovens Measure Overview	2-87
		2.4.2 High Efficiency Electric Convection Ovens Measure Overview	2-92
		2.4.3 ENERGY STAR [®] Commercial Dishwashers Measure Overview	2-98
		2.4.4 Hot Food Holding Cabinets Measure Overview	2-106
		2.4.5 ENERGY STAR [®] Electric Fryers Measure Overview	2-111
		2.4.6 Pre-Rinse Spray Valves Measure Overview	2-117
		2.4.7 ENERGY STAR [®] Electric Steam Cookers Measure Overview	2-122
	2.5	Nonresidential: Refrigeration	2-130
		2.5.1 Door Heater Controls Measure Overview	2-130
		2.5.2 ECM Evaporator Fan Motor Measure Overview	2-137
		2.5.3 Electronic Defrost Controls Measure Overview	2-141
		2.5.4 Evaporator Fan Controls Measure Overview	2-145
		2.5.5 Night Covers for Open Refrigerated Display Cases Measure Overview	2-149
		2.5.6 Solid and Glass Door Reach-Ins Measure Overview	2-157
		2.5.7 Strip Curtains for Walk-In Refrigerated Storage Measure Overview	2-161
		2.5.8 Zero Energy Doors for Refrigerated Cases Measure Overview	2-164
	2.6	Nonresidential: Miscellaneous	2-167
		2.6.1 Vending Machine Controls Measure Overview	2-167
	2.7	Nonresidential: Renewables	2-170
		2.7.1 Solar Photovoltaic (PV) Measure Overview	2-170
	2.8	Nonresidential: Load Management	2-176
		2.8.1 Load Curtailment Measure Overview	2-176

List of Figures

Figure 2-1.	Calculator Post-Retrofit Lighting Measure Categories	2-13
Figure 2-2.	Tracking System Lighting Measure Categories	2-13
Figure 2-3.	Tracking System Lighting Measure Categories	2-14

List of Tables

Table 1-1. Nonresidential Deemed Savings by Measure Category
Table 2-1. New Construction LPDs by Building Type 2-9
Table 2-2. Operating Hours and Coincidence Factors by Building Type
Table 2-3. Deemed Energy and Demand Interactive HVAC Factors
Table 2-4. Nonresidential Lighting-Lamps and Fixtures Revision History
Table 2-6. Lighting Controls Energy and Power Adjustment Factors
Table 2-7. Nonresidential Lighting Controls Revision History 2-20
Table 2-9. Baseline Efficiency of Air Conditioners Replaced via Early Retirement 2-22
Table 2-10. Baseline Efficiency of Heat Pumps Replaced via Early Retirement 2-23
Table 2-11. Baseline Efficiency Levels for ROB and NC Air Conditioners and Heat Pumps 2-24
Table 2-12. Weighted Average Efficiency of Packaged and Split Systems of Undetermined Age 2-25
Table 2-13. Demand and Energy Consumption Coefficients in Amarillo (Weather Zone 1) 2-28
Table 2-14. Demand and Energy Consumption Coefficients in Fort Worth (Weather Zone 2). 2-29
Table 2-15. Demand and Energy Consumption Coefficients in Houston (Weather Zone 3) 2-30
Table 2-16. Demand and Energy Consumption Coefficients in Brownsville (Weather Zone 4) 2-31
Table 2-17. Demand and Energy Consumption Coefficients in El Paso for Air Cooled Systems(Weather Zone 5)2-32
Table 2-18. Remaining Useful Life of Replaced Systems 2-34
Table 2-19. Nonresidential HVAC Single-Zone AC-HP History 2-37
Table 2-21. Baseline Efficiency of Centrifugal Air-cooled Chillers Replaced via Early Replacement
Table 2-22. Baseline Efficiency of Screw, Scroll and Reciprocating Air-Cooled Chillers Replaced via Early Replacement 2-39
Table 2-23. Baseline Efficiency of Centrifugal Water-Cooled Chillers Replaced via Early Replacement
Table 2-24. Baseline Efficiency of Screw, Scroll and Reciprocating Water-Cooled Chillers Replaced via Early Replacement 2-40

Table 2-25. Baseline Efficiency Levels for ROB a Pumps, and Water- and Air-Cooled Chillers)	and NC HVAC Units (Air Conditioners, Heat
Table 2-26. Weighted Average Efficiency [EER] Undetermined Age	of non-Centrifugal Air-Cooled Chillers of
Table 2-27. Weighted Average Efficiency [EER] Undetermined Age	
Table 2-28. Weighted Average Efficiency [kW/to Undetermined Age	
Table 2-29: Weighted Average Efficiency [kW/to Undetermined Age	n] of Water-Cooled Centrifugal Chillers of
Table 2-30. Demand and Energy Consumption (Coefficients in Amarillo (Weather Zone 1) 2-46
Table 2-31. Demand and Energy Consumption (Coefficients in Fort Worth (Weather Zone 2). 2-46
Table 2-32. Demand and Energy Consumption (Coefficients in Houston (Weather Zone 3) 2-47
Table 2-33. Demand and Energy Consumption C	Coefficients in Brownsville (Weather Zone 4) 2-47
Table 2-34. Demand and Energy Consumption C	Coefficients in El Paso (Weather Zone 5) 2-48
Table 2-35. Remaining Useful Life of Replaced S	Systems 2-48
Table 2-36. Remaining Useful Lives of Systems	of Undetermined Age 2-50
Table 2-37. Nonresidential HVAC-Chillers Histor	y
Table 2-39. Baseline Efficiency Levels for PTAC	PTHP ROB and NC Units2-54
Table 2-40: Baseline Efficiency Levels for Room	Air Conditioners ROB and NC Units 2-55
Table 2-41: Demand and Energy Consumption 0 Building Type	Coefficients by Climate Zone for Hotel – Small 2-57
Table 2-42: Nonresidential HVAC PTAC-PTHP H	History 2-59
Table 2-44: Deemed Energy and Demand SavinControl by Climate Region	gs Values for Outlet Damper Part-Load Fan
Table 2-45: Deemed Energy and Demand SavinControl by Climate Region	0
Table 2-46: Deemed Energy and Demand SavinControl by Climate Region	gs Values for Inlet Guide Vane Part-Load Fan
Table 2-47: Nonresidential HVAC-VFD History	
Table 2-49: R-Values of Different Material [hr-ft2-	°F/Btu]2-77
Table 2-50: TMY2 Solar Data	
Table 2-51: Deemed Values used in Algorithm for	or El Paso Electric2-78
Table 2-52: Cool Roof Deemed Savings for El Pa	aso Electric 2-78
Table 2-53: Nonresidential Cool Roof History	
Table 2-55: Solar Heat Gain Factors	
Table 2-56: Solar Screen Deemed Savings for E	PE (Weather Zone 5)2-84

Table 2-57:	Nonresidential Window Film History	2-86
Table 2-59:	Assumptions for Baseline and High-Efficiency Electric Combination Ovens	2-88
Table 2-60:	Annual Demand and Energy Savings with Summary of Key Parameters	2-90
Table 2-61:	Deemed Energy and Demand Savings Values by Building Type	2-90
Table 2-62:	Nonresidential High-Efficiency Combination Oven History	2-91
Table 2-64:	Baseline Assumptions for Electric Convection Ovens	2-93
Table 2-65:	High-Efficiency Assumptions for Electric Convection Ovens	2-93
Table 2-66:	Deemed Variables for Energy and Demand Savings Calculations	2-95
Table 2-67:	Deemed Energy and Demand Savings Values by Building Type	2-96
Table 2-68:	Nonresidential High-Efficiency Convection Oven History	2-97
Table 2-70:	Nonresidential ENERGY STAR [®] Commercial Dishwashers History	2-99
Table 2-71:	Baseline Water Consumption in Gallons per Rack of Dishes Washed 2-	-100
Table 2-72:	High-Efficiency Requirements for Commercial Dishwashers 2-	-100
Table 2-73:	Deemed Variables for Energy and Demand Savings Calculations 2-	-101
	Assumed Facility Annual Days of Operation and Racks Washed per Day for Both gh Temperature Dishwashers2-	
	Deemed Energy and Peak Demand Savings Values by Building Type for Low e Dishwashers Supplied with Hot Water from an Electric Hot Water Heater 2-	-103
Temperature	Deemed Energy and Peak Demand Savings Values by Building Type for High re Dishwashers Supplied with Hot Water from an Electric Hot Water Heater Using a oster Heater	
Temperature	Deemed Energy and Peak Demand Savings Values by Building Type for High re Dishwashers Supplied with Hot Water from a Gas Hot Water Heater Using an oster Heater	-104
Table 2-78:	Nonresidential ENERGY STAR [®] Commercial Dishwashers History	-105
Table 2-80:	ENERGY STAR [®] Requirements for Commercial Hot Food Holding Cabinets 2-	-107
Table 2-81:	Baseline and Energy Efficient Equipment Daily Energy Consumption 2-	-108
Table 2-82:	Equipment Operating Hours per Day and Facility Operating Days per Year 2-	-108
Table 2-83:	Deemed Energy and Demand Savings Values by Building Type	-109
Table 2-84:	Nonresidential Hot Food Holding Cabinets History2-	-110
Table 2-86:	Baseline Assumptions for Electric Fryers2-	-112
Table 2-87:	High-Efficiency Requirements for Electric Fryers2-	-112
Table 2-88:	Deemed Variables for Energy and Demand Savings Calculations	-114
Table 2-89:	Annual Energy Consumption and Daily Food Cooked by Building Type 2-	-114
Table 2-90:	Deemed Energy and Demand Savings Values by Building Type 2-	-115
Table 2-91:	Nonresidential Electric Fryers History2-	-116

Table 2-93: Deemed Variables for Energy and Demand Savings Calculations	2-119
Table 2-94: Deemed Energy and Demand Savings Values by Building Type	2-120
Table 2-95: Nonresidential Pre-Rinse Spray Valves History	2-121
Table 2-97: High-Efficiency Assumptions for Electric Steam Cookers	2-123
Table 2-98: Deemed Variables for Energy and Demand Savings Calculations	2-125
Table 2-99: Annual Energy Consumption and Daily Food Cooked by Building Type	2-126
Table 2-100: Deemed Energy and Demand Savings Values by Building Type	2-127
Table 2-101: Nonresidential High-Efficiency Commercial Steam Cookers History	2-128
Table 2-103: Values Based on Climate Region City	2-134
Table 2-104:Deemed Energy and Demand Savings Values by Location and RefrigerationTemperature in kWh per Linear Foot of Heater	
Table 2-105: Nonresidential Door Heater Controls History	2-136
Table 2-107: Deemed Variables for Energy and Demand Savings Calculations	2-139
Table 2-108: Nonresidential ECM Evaporator Fan Motors History	2-140
Table 2-110: Deemed Variables for Energy and Demand Savings Calculations	2-143
Table 2-111: Nonresidential Electronic Defrost Controls History	2-144
Table 2-113: Deemed Variables for Energy and Demand Savings Calculations	2-147
Table 2-114: Nonresidential Evaporator Fan Controls History	2-148
Table 2-116: Various Climate Zone Design Dry Bulb Temperatures and Representative Cities.	2-151
Table 2-117: Modeled Deemed Savings for Night Covers for Texas (per Linear Foot)	2-155
Table 2-118: Nonresidential Night Covers for Open Refrigerated Display Cases History	2-156
Table 2-120: Baseline Energy Consumption ⁷	2-158
Table 2-121: Efficient Energy Consumption	2-158
Table 2-122: Nonresidential Solid and Glass Door Refrigerators and Freezers History	2-160
Table 2-123: Deemed Energy and Demand Savings for Freezers and Coolers	2-162
Table 2-124: Nonresidential Walk-In Refrigerator and Freezer Strip Curtains History	2-163
Table 2-126: Deemed Variables for Energy and Demand Savings Calculations	2-165
Table 2-127: Energy and Demand Deemed Savings	2-166
Table 2-128: Nonresidential Zero-Energy Refrigerated Case Doors History	2-166
Table 2-130: Deemed Energy and Demand Savings Values by Equipment Type	2-168
Table 2-131: Nonresidential Vending Machine Controls History	2-169
Table 2-133: Incentivized System Ranges by Utility	2-170
Table 2-134: Nonresidential Solar Photovoltaic History	2-175
Table 2-136: Minimum Facility Demand Savings by Utility	2-177

Table 2-137: Peak Demand Period by Utility	2-177
Table 2-138: Utility Program Details Overview	2-179
Table 2-139: AEP (TNC & TCC) Interruption Options	2-179
Table 2-140: AEP (SWPECO) Interruption Options	2-179
Table 2-141: Xcel Interruption Options	2-180
Table 2-142: Utility Verification Plan Overview	2-181
Table 2-143: Nonresidential Demand Response Load Management History	2-182
Table 3-1: Operating Hours Building Type, By Utility	2
Table 3-2: Coincidence Factors Building Type, By Utility	4
Table 3-3. Coincidence Factors Building Type, By Utility	6
Table 3-4. Energy Adjustment Factors By Utility	9
Table 3-5. Demand Adjustment Factors By Utility	10

Acknowledgements

The Technical Reference Manual is maintained by the Public Utility Commission of Texas' independent Evaluation, Monitoring and Verification (EM&V) team members—Tetra Tech, The Cadmus Group, Itron, and Johnson Consulting Group.

This initial version of the Texas Technical Reference Manual was primarily developed from program documentation and measure savings calculators used by the Texas Electric Utilities and their Energy Efficiency Services Providers (EESPs) to support their energy efficiency efforts, and original source material from petitions filed with the Public Utility Commission of Texas by the utilities, their consultants and EESPs such as Frontier Associates, ICF, ClearRESULT and Nexant¹. Portions of the Technical Reference Manual are copyrighted 2001-2013 by the Electric Utility Marketing Managers of Texas (EUMMOT), while other portions are copyrighted 2001-2013 by Frontier Associates. Certain technical content was added by the EM&V team to provide further explanation and direction as well as consistent structure and level of information.

TRM Technical Support

Technical support and questions can be emailed to: TexasTRM@tetratech.com

¹ Source materials are cited throughout the TRM. For version 1.0, there are some missing citations, which the EM&V team is working to have completed by TRM version 2.1.

1. INTRODUCTION

This volume of the TRM contains the deemed savings for nonresidential measures that have been approved for use in Texas by the PUCT. This volume includes instructions regarding various savings calculators and reference sources of the information. TRM 1 serves as a centralized source of deemed savings values; where appropriate, Measurement & Verification (M&V) methods by measure category are noted for informational purposes only regarding the basis of projected and claimed savings.

This Nonresidential Measures Volume 3 should be considered a "working document" for the development of TRM 2. Because the nonresidential measure templates had to be synthesized from a variety of sources across multiple utilities and EESP tools (unlike the residential measures in Volume 2, which were primarily derived from a single deemed savings manual) there were many issues that could not be resolved during TRM 1 development. The nonresidential measure templates in this document facilitate the TRM 2 development process as it is the first time that nonresidential measure-specific approaches and issues are consolidated in a single statewide document, which can be updated as issues are discussed and resolved².

Table 1-1 provides an overview of the nonresidential measures contained within this TRM 1 Volume 3 and the types of deemed savings estimates available for each one. There are four types of deemed savings estimates identified:

- *Point estimates* that provided a single deemed savings value that correspond to a single measure or type of technology.
- Deemed saving tables that provide energy and peak savings as a function of size, capacity; building type, efficiency level, or other inputs.
- Savings algorithms that require user defined inputs that must be gathered on site and the identification of default inputs where primary data could not be collected. In many cases, these algorithms are provided as references to deemed savings tables, point estimates, or calculator explanations.
- Calculators are used by different utilities and implementers to calculate energy savings for different measures. In many cases, there are several different calculators available for a single measure. Sometimes their background calculators are similar, and in other cases, estimates can vary greatly between each calculator.

M&*V* methods are also used for some measures to calculate savings in the event that standard equipment is not used, or the specified building types do not apply. For some of these measures, both a simplified M&V approach and a full M&V approach may be allowed by the utility. M&V methods as a source of claimed and projected savings are noted for informational purposes only.

Please consult Volume I: Overview and User Guide, Section 4: Structure and Content, for details on the organization of the measure templates presented in this volume.

² A concern of the working document nature of TRM 1 Volume 3 could be the use of TRM 1 for PY2014 EM&V. For any nonresidential measures where there are unresolved issues in TRM 1, the EM&V team will work with the utilities and EESPs to finalize the issues for the TRM 2 in February 2014, so any outstanding issues will be resolved for use in 2014 EM&V.

Measure Category	Measure Description	Point Estimates	Deemed Savings Tables	Savings Algorithm	Calculator	M&V
Lighting	Lighting - Lamps and Fixtures			Х	Х	Х
Lighting	Lighting Controls			Х	Х	Х
HVAC (Cooling)	Package and Split-System (AC and Heat Pumps)			Х	х	х
HVAC (Cooling)	Chillers			Х	х	х
HVAC (Cooling)	Package Terminal Units and Room Air Conditioners (AC and Heat Pumps)			Х	х	х
HVAC (Ventilation)	VFDs on AHU Supply Fans		Х	Х		
Building Envelope	Cool Roof	x		Х	Х	
Building Envelope	Window Films and Solar Screens	x		Х	Х	
Food Service	High Efficiency Electric Combination Ovens		Х	Х		
Food Service	High Efficiency Electric Convection Ovens		Х	Х		
Food Service	ENERGY STAR [®] Commercial Dishwashers		Х	Х		
Food Service	ENERGY STAR [®] Commercial Electric Hot Food Holding Cabinets		Х	Х		
Food Service	ENERGY STAR [®] Kitchen Electric Fryers		Х	Х		
Food Service	Pre-Rinse Spray Valves		Х	Х		
Food Service	ENERGY STAR [®] Electric Steam Cookers		Х	Х		
Refrigeration	Door Heater Controls		Х	Х		
Refrigeration	ECM Evaporator Fan Motors			Х		
Refrigeration	Electronic Defrost Control			Х		
Refrigeration	Evaporator Fan Controls			Х		
Refrigeration	Night Covers for Open Refrigerated Cases		Х	Х		
Refrigeration	High-Efficiency Solid & Glass Door Reach-in Cases			Х		
Refrigeration	Strip Curtains for Walk-in Cooler/Freezer		Х			
Refrigeration	Low/No Anti-sweat Heat Glass Doors (Zero Energy Glass Doors)		Х	Х		
Miscellaneous	Vending Machine Controllers		Х	Х		
Solar Electric	Solar Photovoltaics			Х		Х
Demand Response	Load Curtailment Options					х

Table 1-1. Nonresidential Deemed Savings by Measure Category

2. NONRESIDENTIAL MEASURES

2.1 NONRESIDENTIAL: LIGHTING

2.1.1 Lamps and Fixtures Measure Overview

TRM Measure ID: NR- LT-LF³ Market Sector: Commercial Measure Category: Lighting Applicable Building Types: All Commercial, Multifamily common areas Fuels Affected: Electricity (Interactive HVAC effects: Electric/Gas space heating) Decision/Action Types: Retrofit (RET) and New Construction (NC) Program Delivery Type: Prescriptive, Custom, Direct Install Deemed Savings Type: Deemed Savings Calculation Savings Methodology: Calculator, M&V

Measure Description

This section provides estimates of the energy and peak savings resulting from the retrofit, replacement, or new installation of existing lamps and/or ballasts with new energy efficient lamps and/or ballasts. This TRM Measure ID covers the following lighting technologies:

- Linear Fluorescent T5s, and High-Performance or Reduced Watt T8s. Linear fluorescent measures may also involve delamping⁴ with or without the use of reflectors.
- CFLs (Compact Fluorescent lamps) with hardwired ballasts, locking mechanisms, or permanent socket conversions
- Induction lamps
- Pulse-start (PSMH) and Ceramic Metal Halide (CMH) lamps, and other HIDs
- LED (Light emitting diode) Lamps and fixtures

Energy and demand savings are based on operating hours, coincident-load factors, and changes in pre-existing and post-installation lighting loads as determined using an approved lighting *Standard Fixture Wattage* table (see the *Lighting Survey Form⁵*). The *Lighting Survey Form* (*LSF*) is a calculator that is used to determine energy and demand savings. Pre and post-retrofit lighting inventories are entered and used with the pre-loaded stipulated values and

³ The letter codes used to identify measure sector, end use, and measure category are described in Table 4-2 in TRM Volume I.

⁴ Delamping energy savings are eligible if done in conjunction with T-8 lamp and electronic ballast retrofits.

⁵ Maintained by Frontier/EUMMOT: http://www.texasefficiency.com/images/documents/lsf_2013_v8.01_250%20rows.xlsm

algorithms needed to calculate energy and demand savings. Components of the calculator include:

- Instructions and Project Information
- Pre and Post-retrofit lighting inventories. A tab for exempt fixtures, and a description of the exemptions, is also present in this calculator.
- Fixture descriptions are selected from a Standard Fixture Wattage table.
- Factor Tables which contain stipulated operating hours, coincidence factors, and interactive HVAC factors.
- A Summary tab, where the final energy and demand calculations are displayed. The data from this tab is entered into the utility program tracking data as the claimed savings values.

Although the generic *Lighting Survey Form* calculator is available to all entities on the Texas Energy Efficiency website, several utilities have their own versions.

Eligibility Criteria

This section describes the system information and certified wattage values that must be used to estimate energy and peak savings from lighting systems installed as part of the Texas utility energy efficiency programs. The fixture codes and the demand values listed in the Table of Standard Fixture Wattages are used in calculating energy and demand savings for lighting efficiency projects. In addition, LED and linear fluorescent T8s need to be certified, as follows:

High-performance (HP) and reduced-watt (RW) T8 linear fluorescent lamps and ballasts need to be certified by the *Consortium for Energy Efficiency* (CEE). Links for both HPT8s and RWT8s are provided on the Texas Energy Efficiency website⁶.

LED lamps and fixtures need to be certified by *Design Lights Consortium* or *Energy Star*. Links for this equipment are also available on the Texas Energy Efficiency website.

Exempt Lighting for New Construction. Some types of new construction lighting fixtures are exempt from inclusion in the interior lighting demand savings calculation, but they are still included in the total installed lighting power calculations for a project. Exempt fixtures are those that do not provide general/ambient/area lighting, have separate control devices, and are installed in one of the following applications⁷:

- 1. The connected power associated with the following lighting equipment is not included in calculating total connected lighting power.
 - 1.1. Professional sports arena playing-field lighting.
 - 1.2. Sleeping-unit lighting in hotels, motels, boarding houses, or similar buildings.
 - 1.3. Emergency lighting automatically off during normal building operation.

⁶ Links to the CEE T8 and LED performance certification organizations can be found on this page: <u>http://www.texasefficiency.com/index.php/regulatory-filings/lighting.</u>

⁷ IECC 2009, Section 505.5.1

- 1.4. Lighting in spaces specifically designed for use by occupants with special lighting needs including visual impairment and other medical and age-related issues.
- 1.5. Lighting in interior spaces that have been specifically designated as a registered interior historic landmark.
- 1.6. Casino gaming areas.
- 2. Lighting equipment used for the following shall be exempt provided that it is in addition to general lighting and is controlled by an independent control device:
 - 2.1. Task lighting for medical and dental purposes.
 - 2.2. Display lighting for exhibits in galleries, museums, and monuments.
- 3. Lighting for theatrical purposes, including performance, stage, film production, and video production.
- 4. Lighting for photographic processes.
- 5. Lighting integral to equipment or instrumentation and installed by the manufacturer.
- 6. Task lighting for plant growth or maintenance.
- 7. Advertising signage or directional signage.
- 8. In restaurant building and areas, lighting for food warming or integral to food preparation equipment.
- 9. Lighting equipment that is for sale.
- 10. Lighting demonstration equipment in education facilities.
- 11. Lighting approved because of safety or emergency considerations, inclusive of exit lights.
- 12. Lighting integral to both open and glass-enclosed refrigerator and freezer cases.
- 13. Lighting in retail display windows, provided the display area is enclosed by ceiling height partitions.
- 14. Furniture-mounted supplemental task lighting that is controlled by automatic shut off.

Baseline Condition

The baseline condition or assumed baseline efficiency used in the savings calculations depends on the decision type used for the measure. For truly *new construction* (i.e. not gut/rehab or renovation), the baseline will be based on a Lighting Power Density (LPD) in watts/ square foot by building type, as specified by the relevant energy code/standard. For *retrofit* applications, the baseline efficiency would typically reflect the in-situ, pre-existing equipment. Fixture wattages used for the savings calculations are determined from the Table of Standard Fixture Wattages.

Linear Fluorescent T12 Special Conditions

The U.S. Energy Policy Act of 1992 (EPACT) set energy efficiency standards that preclude certain lamps and ballasts from being manufactured or imported into the U.S. On July14, 2012,

the latest standards covering general service linear fluorescents went into effect. Under this provision, almost all 4-foot and some 8-foot T12 lamps were prohibited from manufacture. The standard also affected first-generation, 4-foot, 700 series T8 lamps, however, an extension was granted and they will not be phased out until July 2014. Because all lighting equipment for Texas energy efficiency programs must be EPACT compliant, including existing or baseline equipment, adjustments were made to the T12 fixtures in the Standard Fixture Wattage table. Certain T12 lamp/ballast combinations which are non-EPACT compliant are assigned EPACT demand values. Thus, a 4-foot fixture with 40-watt T12 lamps and standard magnetic ballast has the same demand value as a like fixture equipped with 34-watt T12 lamps and energy-efficient magnetic ballast.⁸

High-Efficiency Condition

Acceptable efficient fixture types are specified in the Table of Standard Fixture Wattages. In addition, as explained under Eligibility Criteria, some technologies such as LEDs must be ENERGY STAR[®] labeled equipment.

High-Efficiency/Performance Linear Fluorescent T8s/T12s

In 2011, the investor-owned utilities of Texas made PUCT-approved changes to the rules and requirements for lighting incentives. As of January 1, 2012, post-retrofit systems using T12 electronic ballasts or standard T8 electronic ballasts are **not** eligible for incentives.

All post-retrofit technologies must use Reduced Wattage T8 systems or High Performance T8 systems that meet the High Performance and Reduced Wattage lamp and ballast efficiency specifications developed by the Consortium for Energy Efficiency (CEE) as published on its website. This is a requirement for all T8 system retrofits. The new rules do not require High Performance or Reduced Wattage T8 systems for incentives for New Construction projects. Utilities may incentivize standard T8 systems for New Construction—however; savings improve greatly for Projects using High Performance or Reduced Wattage systems.

In addition, if CEE does not have efficiency guidelines for a T8 system (such as for 8-foot, 3-foot, 2-foot, and U-bend T8 products), the product must have higher light output or reduced wattage than its standard equivalent product, while also providing a higher CRI (color rendition index), a higher rated lamp life, and an equivalent or higher initial and mean lumen output per lamp.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

This section describes the deemed savings methodology for both energy and demand savings for all lighting projects. The savings are calculated in separate methods for retrofit projects and new construction projects, and both are described below.

⁸ A similar approach may need to be used when 700 series T8s are phased out in 2014.

<u>Retrofit⁹:</u>

$$Energy \, Savings = (kW_{pre} - kW_{installed}) \times Hours \times (HVAC_{energy})$$

Equation 1

Peak Summer Demand Savings =
$$(kW_{pre} - kW_{installed}) \times CF \times (HVAC_{demand})$$

Equation 2

New Construction:

$$Energy \, Savings = \left(\frac{LPD \times FloorArea}{1000} - kW_{installed}\right) \times Hours \times \left(HVAC_{energy}\right)$$

Equation 3

Peak Summer Demand Savings =
$$\left(\frac{LPD \times FloorArea}{1000} - kW_{installed}\right) \times CF \times (HVAC_{demand})$$

Equation 4

Where:

kW _{pre}	=	<i>Total kW of existing measure (Fixture wattage from Standard wattage table multiplied by quantity of fixtures)</i>
<i>kW</i> _{installed}	=	Total kW of retrofit measure (Fixture wattage from Standard wattage table multiplied by quantity of fixtures)
LPD	=	<i>Acceptable Lighting Power Density based on building type from efficiency codes ([W/ft²]</i>
Floor Area	=	Floor area of the treated space where the lights were installed
Hours	=	Hours by building type from Table 2-2(p.2.1-10)
CF	=	<i>Coincidence factor by building type from Table 2-2 (p.2.1-10)</i>
<i>HVAC</i> energy	=	Energy Interactive HVAC factor by building type
HVAC _{demand}	=	Demand Interactive HVAC factor by building type

Each of the parameters in these equations, and the approach or their stipulated values, is discussed in detail below.

⁹ For non-operating fixtures, the baseline demand may be adjusted by using values from the Standard Wattage Table. The number of non-operating fixtures will be limited to 10% of the total fixture count per facility.

Lamp and Fixture Wattages (kWpre, kWinstalled)

Existing Construction: Standard Fixture Wattage Table. The Table of Standard Fixture Wattages can be found in the *Lighting Survey Form* maintained on the Texas Energy Efficiency website¹⁰. This table is used to assign identification codes and demand values (watts) to common fixture types (fluorescent, incandescent, HID, LED, etc.) used in commercial applications. The table is subdivided into lamp types such as linear fluorescent, compact fluorescent, mercury vapor, etc., with each subdivision sorted by fixture code. Each record, or row, in the Table contains a fixture code, which serves as a unique identifier. A legend explains the rules behind the fixture codes.

Each record also includes a description of the fixture, the number of lamps, the number of ballasts if applicable, and the fixture wattage. The table wattage values for each fixture type are averages of various manufacturers' laboratory tests performed to ANSI test standards. By using standardized demand values for each fixture type, the Table simplifies the accounting procedures for lighting equipment retrofits. The table is usually updated periodically as new fixtures are added.

The fixture codes and the demand values listed in the watt/fixture column in the Table of Standard Fixture Wattages are used in calculating energy and demand savings for any lighting efficiency project. To facilitate and ensure this process, the table is incorporated into all Frontier-supported lighting calculators, and the lookup happens automatically. The lighting calculator created by Nexant for CenterPoint does not use this table, but uses something similar.

For implementers interested in adding new fixtures to Frontier's lighting table, a request should be submitted to Frontier. The request should include all information required to uniquely identify the fixture type and to fix its demand, as well as other contextual information needed for the table. If possible, the request should also be supported by manufacturer's ANSI test data. Frontier then periodically releases updates of the table.

Currently there appear to be at least two versions of the Table of Standard Fixture Wattages (Frontier and Nexant). Having a common master table in a single location would make it easier to maintain and add new fixtures, and more importantly ensure consistent savings are used for the same lighting measure across the state. However, an alternative approach would be to compare all standard wattage tables being used as part of the evaluation effort, identify differences, and choose the one that is most correct.

New Construction: Lighting Power Density Table. For new construction projects, the postretrofit lighting wattages are determined as they are for the existing construction projects, from the Standard Fixture Wattage table. However, the baseline wattage is determined from the treated floor area and a lighting power density (LPD) value, which is the allowable watts per square foot of lit floor area as specified by the relevant energy code. These values are presented in Table 2-1.

¹⁰ Frontier Associates Lighting Survey Form, Fixture Description tab: http://www.texasefficiency.com/images/documents/lsf_2013_v8.01_250%20rows.xlsm.

Facility Type	Lighting Power Density (W/ft2)	Facility Type	Lighting Power Density (W/ft2)
Automotive Facility	0.90	Office	1.00
Convention Center	1.20	Outdoor Uncovered Parking Area: Zone 1	0.04
Courthouse	1.20	Outdoor Uncovered Parking Area: Zone 2	0.06
Dining: Bar/Lounge/Leisure	1.30	Outdoor Uncovered Parking Area: Zone 3	0.10
Dining: Cafeteria	1.40	Outdoor Uncovered Parking Area: Zone 4	0.13
Dining: Family	1.60	Parking Garage	0.30
Dormitory	1.00	Penitentiary	1.00
Exercise Center	1.00	Performing Arts	1.60
Gymnasium	1.10	Police/Fire Stations	1.00
Health Care - Clinic	1.00	Post Office	1.10
Hospital	1.20	Religious Buildings	1.30
Hotel	1.00	Retail	1.50
Library	1.30	School/University	1.20
Manufacturing	1.30	Sports Arena	1.10
Motel	1.00	Town Hall	1.10
Motion Picture	1.20	Transportation	1.00
Multi-Family	0.70	Warehouse	0.80
Museum	1.10	Workshop	1.40

In Table 2-1 above, the zones used for the Outdoor Uncovered Parking Areas are:

- Zone 1: Developed areas of national parks, state parks, forest lands, and rural areas
- **Zone 2:** Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited night-time use, and residential mixed use areas
- Zone 3: All other areas
- **Zone 4:** High-activity commercial districts in major metropolitan areas as designated by the local land use planning authority

Operating Hours (Hours) and Coincidence Factors (CFs)

Operating hours and peak demand coincidence factors are assigned by building type, as shown in Table 2-2. The definitions of these building types are based on the definitions used in CBECS¹² building types, but have been modified, and there may even be some differences amongst utilities.

¹¹ Source per *Lighting Survey Form*: ANSI/ASHRAE/IESNA Standard 90.1 -2007 Table. 9.5.1, p. 62 & IECC 2009 Table. 505.5.2, p. 59.

¹² DOE-EIA Commercial Building Energy Consumption Survey.

Building Type Code	Building Type Description	Operating Hours	Summer Peak Coincidence Factor
Educ. K-12, No Summer	Education (K-12 w/o Summer Session)	2,777	47%
Education, Summer	Education: College, University, Vocational, Day Care, and K-12 w/ Summer Session	3,577	69%
Non-24 Hour Retail	Food Sales – Non-24 Hour Supermarket/Retail	4,706	95%
24-Hr Retail	24 Hour Supermarket/Retail	6,900	95%
Fast Food	Food Service – Fast Food	6,188	81%
Sit Down Rest.	Food Service – Sit-down Restaurant	4,368	81%
Health In	Health Care (In Patient)	5,730	78%
Health Out	Health Care (Out Patient)	3,386	77%
Lodging, Common	Lodging (Hotel/Motel/Dorm), Common Area	6,630	82%
Lodging, Rooms	Lodging (Hotel/Motel/Dorm), Rooms	3,055	25%
Manufacturing	Manufacturing	5,740	73%
MF Common	Multi-family Housing, Common Areas	4,772	87%
Nursing Home	Nursing and Residential Care	4,271	78%
Office	Office	3,737	77%
Outdoor	Outdoor Lighting Photo-Controlled	3,996	0% (Winter peak = $61\%^{14}$)
Parking	Parking Structure	7,884	100%
Public Assembly	Public Assembly	2,638	56%
Public Order	Public Order and Safety	3,472	75%
Religious	Religious Worship	1,824	53%
Retail Non Mall/Strip	Retail (Excl. mall and strip center)	3,668	90%
Enclosed Mall	Retail (Enclosed Mall)	4,813	93%
Strip/Non-Enclosed Mall	Retail (Strip Center and non-enclosed mall)	3,965	90%
Service (Non-Food)	Service (excl. food)	3,406	90%
Non-Refrig. Warehouse	Warehouse (non-refrigerated)	3,501	77%
Refrig. Warehouse	Warehouse (refrigerated)	3,798	84%

Table 2-2. Operating Hours and Coincidence Factors by Building Type"	Table 2-2	Operating Hours and Coincidence Factors by Building Ty	ype ¹³
--	-----------	--	-------------------

Note: These petition-approved values listed in this table come from PUCT Docket 39146. The exception to this is the Winter Peak factor of 61% for Outdoor Lighting (see Footnote 14). Slight variations to these are found in other calculators and program manuals. A set of comparisons of HOU and CF across utilities are found in Appendix C.

¹³ Frontier Associates Lighting Survey Form, Factor Tables tab on the Texas Energy Efficiency website: <u>http://www.texasefficiency.com/images/documents/lsf_2013_v8.01_250%20rows.xlsm.</u>

¹⁴ Outdoor lighting is the only nonresidential lighting measure for which a winter peak demand value has currently been developed and used in some utility calculators. There are currently two values used: Frontier uses 0.61 which was developed to represent a statewide average, and Oncor uses 0.64 which was developed to represent its service area.

Interactive HVAC Factors (HVAC energy, demand)

Basic lighting savings are adjusted to account for the lighting system interaction with HVAC systems in conditioned or refrigerated spaces. A reduced lighting load reduces the internal heat gain to the building, which reduces the air conditioning/cooling load but it also increases the heating load. Currently, TRM 1.0 only considers the additional cooling savings, and the heating penalty or increase in usage is ignored.

As Table 2-3 shows, four conditioned space types are used for the Texas programs. There is a single air-conditioned space type ("Electric Refrigerated") and two options for commercial refrigeration type spaces like walk-in coolers and refrigerated warehouses: Medium and Low temperature. Utility procedures state that if the actual application falls between these values, that the higher temperature value should be used. The final space type is unconditioned (or more explicitly uncooled as the focus is on cooling). In the lighting calculators, these values are typically assigned at the line-item level based on the conditioning type for the space in which the fixtures are located.

Space Conditioning Type	Energy Interactive HVAC Factor	Demand Interactive HVAC Factor	
Electric Refrigerated	1.05	1.10	
Med. Temp Refrigeration (33-41°F)	1.25	1.25	
Low Temp Refrigeration (-10-10°F)	1.30	1.30	
None (Unconditioned/Uncooled)	1.00	1.00	

Table 2-3. Deemed Energy and Demand Interactive HVAC Factors¹⁵

Deemed Energy and Demand Savings Tables

This section is not applicable as these calculations are entirely dependent on site-specific parameters related to lighting system operation.

Claimed Peak Demand Savings

A coincidence factor approach is used for this measure and the primary source is a 2005-2007 study.¹⁶ This study had multiple peak period definitions, including several winter peak definitions, and was based on lighting logger and on-site survey data. The values used for Texas are based on summer peak definition from the RLW study that encompasses the months of June through August, and either a) a 4-hour "hottest" weekday peak from 1-5 pm or b) a 2-hour "extreme" weekday peak from 3-5 pm. From the *Lighting Survey Form*, the only exception to a summer peak CF is for the "Outdoor" building type, which uses a coincidence factor based on a winter peak (and the Summer CF is shown as 0).

¹⁵ PUCT Docket 39146. Table 7 (page 17) and Table 12 (page 24).

¹⁶ The primary source is: United Illuminating Company and Connecticut Light & Power, Final Report, 2005 Coincidence Factor Study, RLW Analytics. January 4, 2007. However, six total sources and methods were used in the derivation of the current factors.

Measure Life and Lifetime Savings

The estimated useful life (EUL) values are defined for specific lighting types by the Texas petition process, and are maintained on the Texas Energy Efficiency website and are listed below¹⁷:

- Integrated-ballast CFL Lamps: 2.5 years
- Integrated-ballast LED Lamps: 9 years¹⁸
- Light Emitting Diode: 15 years
- Modular CFL and CCFL Fixtures: 16 years
- T8 and T5 Linear Fluorescents: 15.5 years
- T8 and T5 Linear Fluorescents replacing T12s with magnetic ballasts: 8.5 years¹⁹

Additional Calculators and Tools

Although there is a single generic lighting calculator available to all utilities, there appear to be at least five different variations of lighting calculators being used for the Texas C&I programs. The calculators are periodically updated and a new version published. A comparison of the key stipulated parameters that are used in the calculators - hours of operation, coincidence factors, energy adjustment factors, and power adjustment factors - is provided in Appendix C. Several variations that may need to be reconciled by future TRM efforts have been identified. The lighting calculators currently being used are described briefly below.

Frontier's Lighting Survey Form

EUMMOT/Frontier maintains a deemed savings calculator [*lsf_2013_v8.01_250 rows.xlsm*] for all utilities except Oncor and CenterPoint. This calculator is available from the Texas Energy Efficiency site²⁰. The main calculator modes are Retrofit and New Construction. It has multiple tabs to handle the various aspects of the calculations including Exempt fixtures, Standard Fixture Wattage tables, and deemed stipulated values (operating hours, coincidence factors, interactive HVAC&R factors, etc.). The spreadsheet also permits entry of Custom fixtures and building type stipulated values. Final calculated savings are presented in the Summary tab on the basis of the categories shown in Figure 2-1.

¹⁷ PUCT Docket 36779.

¹⁸ PUCT Docket 38023.

¹⁹ PUCT Docket 39146. Page 15-16.

²⁰ <u>http://www.texasefficiency.com/images/documents/lsf_2013_v8.01_250%20rows.xlsm.</u>

Halogen
High Intensity Discharge (HID)
Integrated-ballast CFL Lamps
Integrated-ballast CCFL Lamps
Modular CFL and CCFL Fixtures
Integrated-ballast LED Lamps
Light Emitting Diode (LED)
Linear Fluorescent
Non-LED Fixtures replacing T12 magnetically-ballasted equipment
LED Fixtures replacing T12 magnetically-ballasted equipment
Removed
Lighting Controls

Figure 2-1. Calculator Post-Retrofit Lighting Measure Categories

CenterPoint [two files]

Nexant develops and maintains these files, which include two calculators: one for retrofit and one for new construction. Deemed or M&V modes are available for both the Retrofit and New Construction calculator. This calculator includes the same set of tabs as the Frontier calculator (e.g. project info, stipulated parameters). Calculated savings and incentives are summarized using the following high-level categories: LED, Non-LED, Relamp (CenterPoint has different incentives for LED and non-LEDs), as shown in Figure 2-2.

Figure 2-2.	Tracking System Lighting Measure Categories
-------------	---

Savings & Incentives					
Deemed	kW	kWh			
LED	0.16	746			
NON-LED	0.00	0			
RELAMP	0.00	0			
Total	0.16	746			
Incentive \$93.28					

Oncor [two files]

Developed and maintained by Oncor. There are two calculators: one for retrofit [2013- E1 (Lighting Retrofit).xls] and the other for new construction [2013-N1(NEW_CONSTRUCTION_ LIGHTING).xlsx]. Two calculation modes are available: Deemed or M&V mode with the key difference being that hours and coincidence factors are supposed to be derived from measurements for the M&V mode. Lighting controls are also integrated into the calculators. There are separate tabs for Instructions, equipment inventory by usage areas, and operating hours, estimated incentives, and a Standard Wattage table. Lamp types in the Standard Wattage Table and for final project savings calculations are listed in Figure 2-3. The new construction calculator is similar in structure, except that a lighting power density (LPD) on a building type basis is used.

LAMP TYPE
Light Emitting Diode (LED)
Linear Fluorescent
Integrated-ballast LED Lamps
Integrated-ballast CFL Lamps
Integrated-ballast CCFL Lamps
Modular CFL and CCFL Fixtures
Halogen
High Intensity Discharge (HID)

Figure 2-3. Tracking System Lighting Measure Categories

Other Miscellaneous Calculators

El Paso Electric appears to have a Small Commercial Lighting Program calculator (*LSF Sm Comm 5-11-12.xlsm*, maintained by CLEAResult), and SWEPCO has an MTP Direct Install program calculator (*KEMA-DI-Ltg_2012.xlsx*, maintained by KEMA).

Program Tracking Data and Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked by the program database to inform the evaluation and apply the savings properly.

Baseline Fixture Configuration

Baseline Lamp Details

Baseline Ballast Type

Baseline Lighting Controls

Baseline Counts of Operating Fixtures

Baseline Counts of Non-Operating Fixtures

Post-Retrofit Fixture Configuration

Post-Retrofit Lamp Details

Post-Retrofit Ballast Type

Post-Retrofit Lighting Controls

Post-Retrofit Counts of Operating Fixtures

Building Type

Savings Approach Type

Conditioned Space Type (% Cooled, %Heated, and heating fuel type)

Equipment Operating Hours

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 36779 - Describes Effective Useful Life

- PUCT Docket 39146 Describes deemed values for energy and demand savings
- PUCT Docket 38023 Describes LED Installation and Efficiency Standards for nonresidential LED products

Relevant Standards and Reference Sources

- DOE's LED Lighting Facts showcases LED products for general illumination from manufacturers who commit to testing products and reporting performance results. <u>http://www1.eere.energy.gov/buildings/ssl/ledlightingfacts.html</u>. Accessed 09/19/2013.
- ENERGY STAR[®] requirements for Commercial LED Lighting. <u>http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup</u> <u>&pgw_code=LTG</u>. Accessed 09/19/2013.

Design Lights Consortium. www.designlights.org. Accessed 09/19/2013.

CEE Guidelines for eligible T8 measures. <u>www.cee1.org</u>. Accessed 09/19/2013.

U.S. Lighting Market Characterization report, September 2002, <u>http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/lmc_vol1_final.pdf</u>. Accessed 9/19/2013.

United Illuminating Company and Connecticut Light & Power. Final Report, 2005 Coincidence Factor Study. <u>http://webapps.cee1.org/sites/default/files/library/8828/CEE_Eval_CTCoincidenceFac_torsC&ILightsHVAC_4Jan2007.PDF</u>. Accessed 09/19/2013.

Document Revision History

Table 2-4. Nonresidential Lighting-Lamps and Fixtures Revision History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.1.2 Lighting Controls Measure Overview

TRM Measure ID: NR-LT-LC Market Sector: Commercial Measure Category: Lighting Applicable Building Types: All Commercial, Multifamily common areas Fuels Affected: Electricity (Interactive HVAC effects: Electric/Gas space heating) Decision/Action Types: Retrofit (RET), New Construction (NC) Program Delivery Type: Prescriptive, Custom, Direct Install Deemed Savings Type: Deemed Savings Calculation Savings Methodology: Calculator, M&V

Measure Description

This measure promotes the installation of lighting controls in both new construction and retrofit applications. For retrofit applications, lighting controls would typically be installed where there is no control other than a manual switch (wall or circuit panel). For new construction lighting systems, they would be added where they are not already required by existing energy or building codes. Promoted technologies include occupancy sensors and daylight dimming controls. Energy and peak demand savings are calculated for these technologies via an energy adjustment factor (EAF²¹) for kWh, and a power adjustment factor (PAF) for kW.

Eligibility Criteria

Measures installed through utility programs must be one of the occupancy sensor or daylighting controls that are described in the adjustment factor tables.

Baseline Condition

The baseline condition assumes no existing or code required (new construction) lighting controls. (e.g. No control equipment in the baseline).

High-Efficiency Condition

The energy-efficient condition is properly installed and calibrated lighting controls that control overhead lighting in a facility based on occupancy or day lighting sensors.

²¹ The Oncor July 2013 TRM includes this note about the EAF "Joint Petitioners propose the use of the term Energy Adjustment Factor (EAF) for determining the energy (kWh) impacts of controls and Power Adjustment Factor (PAF) for determining the demand (kW) impacts of controls. The unit of electrical power is the watt (kW = 1000 watts) while kWh is a unit of energy and a product of both power and time in hours."

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The equations for lighting controls are the same as those used for lighting lamps and fixtures, with the addition of the EAF and PAF multipliers, as shown below.

For Stipulated Retrofit Projects:

total energy Savings = $(kW_{pre} - kW_{post}) \times EAF \times Hours \times (HVAC_{energy})$

Equation 5

total demand Savings = $(kW_{pre} - kW_{post}) \times PAF \times CF \times (HVAC_{demand})$

Equation 6

For Stipulated New Construction Projects and Metered Projects:

 $total \, energy \, Savings = \left(\frac{LPD \times FloorArea}{1000} - kW_{installed}\right) \times Hours \times EAF \times \left(HVAC_{energy}\right)$

Equation 7

$$total \ demand \ Savings = \left(\frac{LPD \times FloorArea}{1000} - kW_{installed}\right) \times PAF \times CF \times (HVAC_{demand})$$

Equation 8

Where:

kW _{pre}	=	Total kW of existing measure (Fixture wattage from Standard wattage table multiplied by quantity of fixtures)
kW_{post}	=	Total kW of retrofit measure (Fixture wattage from Standard wattage table multiplied by quantity of fixtures)
$kW_{installed}$	=	Total kW of newly installed measure (Fixture wattage from Standard wattage table multiplied by quantity of fixtures)
LPD	=	Acceptable Lighting Power Density based on building type [W/ft²]
Floor Area	=	Floor area of building [ft²]
Hours	=	Hours by building type from Table 2-2
EAF	=	Lighting control Energy Adjustment Factor from Table 2-5
PAF	=	Lighting control Power Adjustment Factor from Table 2-5
CF	=	Coincidence factor by building type from Table 2-2

<i>HVAC</i> energy	=	Energy Interactive HVAC factor by building type, Table 2-3
HVAC _{demand}	=	Demand Interactive HVAC factor by building type, Table 2-3

See the 2.1.1 *Lighting – Lamps and Fixtures* measure for an explanation of the non-control variables. The lighting controls peak Power Adjustment Factors (PAFs) and EAFs for different building types are represented in the Table 2-5. The EAF and PAF account for the reduction in on-time, for example a factor of 0.90 means the lights are on 90% of the pre-retrofit operating hours, which is equivalent to a 10% reduction in pre-retrofit on-time.

Control Type	EAF and PAF	Energy Adjustment Factor (EAF)	Power Adjustment Factor (PAF)	
(DC = Daylight Controls)	Control Codes	All Building Types	K-12 (No-Summer Bldgs)	Remaining Bldgs
No controls measures	None	1.00	1.00	1.00
Stipulated DC – continuous dimming	DC-cont	0.70	0.76	0.70
Stipulated DC – multiple step dimming	DC-step	0.80	0.84	0.80
Stipulated DC – ON/OFF (Indoor)	Indoor DC-on/off	0.90	0.92	0.90
Stipulated DC – ON/OFF (Outdoor)	Outdoor DC- on/off	1.00	1.00	1.00
Stipulated Occupancy Sensor	OS	0.70	0.80	0.75
Stipulated OS w/DC – continuous	OS-cont	0.60	0.72	0.65
Stipulated OS w/DC – multiple step	OS-step	0.65	0.76	0.70
Stipulated OS w/DC – ON/OFF	OS-on/off	0.65	0.76	0.70

Table 2-5. Lighting Controls Energy and Power Adjustment Factors²²

Deemed Energy and Demand Savings Tables

This section is not applicable.

Claimed Peak Demand Savings

The PAF as implemented is equivalent to applying an additional adjustment to the basic coincidence factor (CF) developed for the lamp-fixture measure. The PAFs are engineering estimates based on a variety of primary sources, and as such there is no specific time period basis or calculation approach associated with these values. For future TRMs, both summer and winter peak demand values would likely need to be determined, especially for outdoor lighting controls.

²² These values come from Petition 40668. The EAFs are sourced from ASHRAE 90.1-1989 Section 6.4.3. The PAFs provided in the petition are engineering estimates.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for lighting controls as maintained on the Texas Energy Efficiency website is:

Occupancy Sensor: 10 years

Photocell (=Daylighting Control): 10 years

Additional Calculators and Tools

Lighting control factors are fully integrated into the lighting calculators, which are discussed in the 2.1.1 *Lighting – Lamps and Fixtures* measure.

Program Tracking Data & Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

Building Type

Site Floor Area

Baseline Lighting Control Type

Post-Retrofit Lighting Control Type

Existing Fixture Configuration

Existing Fixture Lamp Type

Existing Fixture Wattage

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40668 – Describes deemed values to be used in energy and demand savings calculations.

PUCT Docket 36779 – Describes Effective Useful Life

Relevant Standards and Reference Sources

2009 IECC (Commercial buildings)

ASHRAE 90.1-2010 (Public/State buildings)

ANSI/ASHRAE/IESNA Standard 90.1 -2007

Document Revision History

Table 2-6. Nonresidential Lighting Controls Revision History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.2 NONRESIDENTIAL: HVAC

2.2.1 Split System/Single Packaged Heat Pumps and Air Conditioners Measure Overview

TRM Measure ID: NR-LT-LC

Market Sector: Commercial

Measure Category: HVAC

Applicable Building Types: See Table 2-11 through Table 2-17

Fuels Affected: Electricity

Decision/Action Type: Replace on Burnout (ROB), Early Retirement (ER), and New Construction (NC)

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed Savings Calculation

Savings Methodology: Calculator, M&V

Measure Description

This section summarizes the deemed savings methodology for the installation of Split System and Single Packaged Air Conditioning and Heat Pump systems. This document covers assumptions made for baseline equipment efficiencies for early retirement (ER) based on the age of the replaced equipment, and replace-on-burnout (ROB) and new construction (NC) situations based on efficiency standards. It also provides estimates of baseline equipment efficiencies in the event that the actual age of the unit is unknown.

Applicable efficient measure types include:²³

- Packaged and Split air conditioners (DX or air-cooled)
- Packaged and Split heat pumps (air-cooled)

Eligibility Criteria

For a measure to be eligible to use this deemed savings approach, the following conditions must be met:

• The existing and proposed cooling equipment are electric.

²³ Savings can also be claimed by a retrofit involving a change in equipment type (i.e. Air cooled packaged DX system to a water-cooled centrifugal chiller, or a split system air cooled heat pump to an air-cooled non-centrifugal chiller). In the event that this type of retrofit is performed, the tables from the following HVAC measure templates will need to be referenced:

HVAC – Chillers

HVAC – Split System/Single Packaged Heat Pumps and Air Conditioners

- The project sponsor and utility agree on the correct climate zone to use for the calculation.
- Coefficients are listed in Table 2-11 through Table 2-17 for the type of building and climate zone in which the retrofit occurs and the type of equipment involved.
- The building falls into one of the categories listed in Table 2-11 through Table 2-17

Baseline Condition

The baseline conditions related to efficiency and system capacity for early retirement and replace-on-burnout/new construction are as follows:

Early Retirement

Early retirement systems involve the replacement of a working system. Baseline efficiency is estimated according to the capacity, distribution system type, and year of manufacture of the replaced system. Baseline efficiency levels for systems installed between 1990 and 2007 provided below in Table 2-7 and Table 2-10.

Year Installed (Replaced System)	Split Systems < 5.4 tons [SEER]	Package System < 5.4 tons [SEER]	All Systems 5.4-11.25 tons [EER]	All Systems 11.25-20 tons [EER]	All Systems 20-63.3 tons [EER]	All Systems > 63.3 tons [EER]
< 1991 ²⁴	10	9.7	8.9	8	8	7.8
1992 - 2001	10	9.7	8.9	8.3	8.3	8
2002 - 2005	10	9.7	10.1	9.5	9.3	9
2006 - 2007	13	13	10.1	9.5	9.3	9

Table 2-7. Baseline Efficiency of Air Conditioners Replaced via Early Retirement

Note: Intent of filing is that this is updated every few years so that systems greater than 5 years old will be eligible for early retirement.

²⁴ PUCT Docket 40083 provides baseline efficiencies for Air Conditioners and Heat Pumps, replaced via early retirement programs, as shown in Table 2-7 and Table 2-8. These baseline efficiencies are only created for systems between 1990 and 2007, yet common practice in Texas is to allow systems older than 1990 to use the same baseline efficiencies as those listed for 1990-1991.

Year Installed (Replaced System)	Split Systems < 5.4 tons [SEER]	Package System < 5.4 tons [SEER]	All Systems 5.4-11.25 tons [EER]	All Systems 11.25-20 tons [EER]	All Systems 20-63.3 tons [EER]	All Systems > 63.3 tons [EER]
> 1991 ²⁵	10	9.7	8.9	8	8	7.8
1992 - 2001	10	9.7	8.9	8.3	8.3	8.5
2002 – 2005	10	9.7	9.9	9.1	8.8	8.8
2006 - 2007	13	13	9.9	9.1	8.8	8.8

Table 2-8. Baseline Efficiency of Heat Pumps Replaced via Early Retirement

Note: Intent of filing is that this is updated every few years so that systems greater than 5 years old will be eligible for early retirement.

Replace-on-Burnout (ROB) and New Construction (NC):

Baseline efficiency levels for package and split DX air conditioners and heat pumps are provided in Table 2-9 below. These baseline efficiency levels reflect the latest standards promulgated by ASHRAE and recently-adopted federal manufacturing standards.

²⁵ PUCT Docket 40083 provides baseline efficiencies for Air Conditioners and Heat Pumps, replaced via early retirement programs, as shown in Table 2-7 and Table 2-8. These baseline efficiencies are only created for systems between 1990 and 2007, yet common practice in Texas is to allow systems older than 1990 to use the same baseline efficiencies as those listed for 1990-1991.

System Type	Capacity [Tons]	Baseline Efficiency	Source	
	< 5.4	13 SEER	ASHRAE 90.1-2010	
	5.4-11.25	11 EER	Mfr. Std.	
Air Conditioner ²⁶	11.25-20	10.8 EER	Mfr. Std.	
	20-63.3	9.8 EER	Mfr. Std.	
	≥ 63.3	9.5 EER	ASHRAE 90.1-2010	
	< 5.4	13 SEER	ASHRAE 90.1-2010	
Heat Pump ²⁶	5.4-11.25	10.8 EER	Mfr. Std.	
πεαι Ρυπρ	11.25-20	10.4 EER	Mfr. Std.	
	≥ 20	9.3 EER	Mfr. Std.	

Table 2-9. Baseline Efficiency Levels for ROB and NC Air Conditioners and Heat Pumps

Systems of Unknown Age

Table 2-10 provides failure probability-weighted average efficiency levels for packaged and split DX air conditioners and heat pumps of unknown age.²⁷ These are provided as SEER or EER efficiencies, by equipment type and program year.

²⁶ ASHRAE 90.1-2010 Table 6.8.1A. For all air conditioners and heat pumps larger than 5.4 tons the minimum efficiency levels provided in this table are all reduced by 0.2 from the values published in the referenced sources, in accordance with the footnotes to those tables, allowing this reduction for systems with heating section other than electric resistance heat.

²⁷ As noted in Docket 40885, page 14-15: Failure probability weights are established by assuming that systems for which age information will be unavailable are likely to be older, setting a minimum age threshold, and using the survival functions for the relevant system type to estimate the likelihood that an operational system is of a given age beyond that threshold. Baseline efficiency for each year of system age is established relative to program year. Baseline efficiency levels can be estimated for the next ten program years, taking into account increments in efficiency standards that took place in the historical period.

Air Conditioning						Heat Pump						
Dreatom	Split Packaged All					Split	Packaged	All				
Program Year	< 5.4		5.4-11.12	11.25– 20	20– 63.3	> 63.3		< 5.4	5.4-11.12	11.25–20	20– 63.3	> 63.3
	[SEER]		[EER]			[[SEER] [EER]					
2012	10.0	9.7	8.9	8.3	8.3	8.0	10.0	9.7	8.9	8.3	8.3	8.5
2013	10.0	9.7	8.9	8.3	8.3	8.0	10.0	9.7	8.9	8.3	8.3	8.5
2014	10.0	9.7	9.0	8.4	8.4	8.1	10.0	9.7	9.0	8.4	8.3	8.5
2015	10.0	9.7	9.2	8.6	8.5	8.2	10.0	9.7	9.1	8.5	8.4	8.6
2016	10.0	9.7	9.3	8.7	8.6	8.3	10.0	9.7	9.2	8.6	8.5	8.6
2017	10.0	9.7	9.5	8.9	8.8	8.5	10.0	9.7	9.4	8.7	8.5	8.6
2018	10.3	10.0	9.6	9.0	8.9	8.6	10.3	3 10.0	9.5	8.8	8.6	8.7
2019	10.7	10.4	9.7	9.1	9.0	8.7	10.7	' 10.4	9.6	8.9	8.6	8.7
2020	11.0	10.8	9.8	9.2	9.1	8.8	11.0) 10.8	9.7	8.9	8.7	8.7
2021	11.4	11.2	9.9	9.3	9.2	8.9	11.4	11.2	9.8	9.0	8.7	8.8
2022	11.8	11.6	10.1	9.5	9.3	9.0	11.8	3 11.6	9.9	9.2	8.8	8.8

Table 2-10. Weighted Average Efficiency of Packaged and Split Systems of Undetermined Age

High-Efficiency Condition

The high-efficiency conditions for early retirement and replace-on-burnout/new construction are as follows for new construction and early retirement/replace-on- burnout

New Construction

The scope of the project for which incentives can be requested is limited to individual pieces of equipment.

Early Retirement and Replace on Burnout

The high-efficiency retrofits must meet the following criteria²⁸:

Must be within 80% to 120% of the replaced electric cooling capacity

No additional measures are being installed that directly affect the operation of the cooling equipment (i.e., control sequences, cooling towers, and condensers).

²⁸ From PUCT Docket #41070

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Peak Demand Savings (kW) = Tons × $(a \times \eta_{baseline} - b \times \eta_{retrofit})$

Equation 9

Energy Savings
$$(kWh) = Tons \times (c \times \eta_{baseline} - d \times \eta_{retrofit})$$

Equation 10

Where:

Tons	=	Rated equipment cooling capacity at AHRI standard conditions (of the smallest unit to be installed or removed)
$\eta_{\textit{baseline}}$	=	Efficiency of existing equipment (ER) or standard equipment (ROB/NC) (kW/Ton)
$\eta_{\textit{retrofit}}$	=	Rated efficiency of the newly installed equipment (kW/Ton) - (Must exceed ICEE 2009)
a,b	=	Demand coefficients for appropriate climate zone, building type, and new and standard equipment types, see Table 2-11 through Table 2-17
c,d	=	Energy coefficients for appropriate climate zone, building type, and new and standard equipment types, see Table 2-11 through Table 2-17

Table 2-7 and Table 2—10 provide efficiency ratings for baseline equipment. In some cases, the efficiency ratings are given in terms of SEER or EER. In the cases where the efficiency is not provided in terms of kW/ton, a conversion to kW/ton needs to be performed, using the following conversion calculations:

$$\frac{kW}{Ton} = \frac{12}{EER}$$

Equation 11

$$\frac{kW}{Ton} = \frac{12}{SEER \times 0.697 + 2.0394}$$

Equation 12

Table 2-11 through Table 2-17 reflects tables showing demand and energy coefficients. These HVAC coefficients are calculated in Docket 40885, by climate zone, building type, and

equipment type. A description of the calculation method can also be found in Docket No. 40885, Attachment B.

Deemed Energy and Demand Savings Tables

	Packaged and Split DX				
Building Type	Air Cor	nditioner	Heat	Pump	
building Type	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients	
Apartment-Midrise	0.80	727	0.80	1,116	
Clinic-Out Patient	0.82	2,189	0.82	3,743	
College	0.92	1,721			
Convenience	0.92	3,452			
Grocery	0.92	2,252			
Hospital	0.89	3,107	0.89	4,638	
Hotel-Large	0.87	1,906	0.87	3,033	
Hotel-Small	0.66	1,309	0.66	2,365	
Motel	0.92	1,887			
Nursing Home	0.92	1,873			
Office-Large	0.86	1,213	0.86	1,795	
Office-Medium	0.73	893	0.73	1,440	
Office-Small	0.73	769	0.73	1,171	
Public Assembly	0.92	1,797			
Restaurant-Full Service	1.00	1,337	1.00	2,317	
Restaurant-Quick Serve	0.95	1,078	0.95	2,124	
Religious Worship	0.90	1,585			
Retail-Single	0.78	832	0.78	1,579	
School-Primary	0.95	853	0.95	1,626	
School-Secondary	0.94	798	0.94	1,495	
Service	0.92	1,848			
Strip Mall	0.89	924	0.89	1,710	
Supermarket	0.61	800	0.61	1,586	
Warehouse	0.62	290	0.62	1,660	

		Packaged and Split DX				
Building Type	Air Cor	nditioner	Heat	Heat Pump		
bunding Type	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients		
Apartment-Midrise	0.90	1,322	0.90	1,606		
Clinic-Out Patient	0.88	2,828	0.88	4,329		
College	0.91	1,955				
Convenience	0.92	3,831				
Grocery	0.92	2,815				
Hospital	0.98	4,185	0.98	5,534		
Hotel-Large	0.96	2,962	0.96	3,836		
Hotel-Small	0.85	2,203	0.85	2,948		
Motel	0.92	2,211				
Nursing Home	0.92	2,218				
Office-Large	0.91	1,720	0.91	2,123		
Office-Medium	0.85	1,281	0.85	1,691		
Office-Small	0.91	1,347	0.91	1,568		
Public Assembly	0.92	2,385				
Restaurant-Full Service	0.86	1,548	0.86	2,150		
Restaurant-Quick Serve	0.87	1,302	0.87	1,773		
Religious Worship	0.92	1,946				
Retail-Single	0.87	1,231	0.87	1,653		
School-Primary	0.91	1,162	0.91	1,636		
School-Secondary	1.00	1,244	1.00	1,641		
Service	0.92	2,262				
Strip Mall	0.93	1,288	0.93	1,698		
Supermarket	0.85	1,296	0.85	1,918		
Warehouse	0.89	622	0.89	1,567		

		Packaged and Split DX				
Building Type	Air Cor	nditioner	Heat	Pump		
Building Type	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients		
Apartment-Midrise	0.98	1,797	0.98	2,041		
Clinic- Out Patient	0.82	3,116	0.82	3,283		
College	0.85	2,175				
Convenience	0.88	4,168				
Grocery	0.87	2,935				
Hospital	0.94	4,676	0.94	5,915		
Hotel-Large	0.95	3,327	0.95	4,093		
Hotel-Small	0.81	2,537	0.81	2,999		
Motel	0.84	2,404				
Nursing Home	0.84	2,368				
Office-Large	0.88	1,903	0.88	2,184		
Office-Medium	0.75	1,357	0.75	1,644		
Office-Small	0.85	1,445	0.85	1,519		
Public Assembly	0.86	2,559				
Restaurant-Full Service	0.86	1,881	0.86	2,472		
Restaurant-Quick Serve	0.85	1,536	0.85	1,852		
Religious Worship	0.87	2,028				
Retail-Single	0.91	1,437	0.91	1,637		
School-Primary	0.84	1,265	0.84	1,544		
School-Secondary	0.96	1,396	0.96	1,589		
Service	0.87	2,429				
Strip Mall	0.93	1,456	0.93	1,638		
Supermarket	0.73	1,325	0.73	1,709		
Warehouse	0.81	545	0.81	1,068		

Table 2-13. Demand and Energy Consumption Coefficients in Houston (Weather Zone 3)

		Packaged and Split DX				
Building Type	Air Cor	nditioner	Heat	Pump		
Building Type	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients		
Apartment-Midrise	0.94	2,381	0.94	2,555		
Clinic-Out Patient	0.84	3,294	0.84	4,725		
College	0.83	2,547				
Convenience	0.85	4,647				
Grocery	0.85	3,489				
Hospital	0.92	5,286	0.92	6,366		
Hotel-Large	0.95	4,041	0.95	4,751		
Hotel-Small	0.78	3,019	0.78	3,388		
Motel	0.84	2,973				
Nursing Home	0.85	2,953				
Office-Large	0.89	2,338	0.89	2,544		
Office-Medium	0.79	1,545	0.79	1,760		
Office-Small	0.82	1,782	0.82	1,843		
Public Assembly	0.85	3,077				
Restaurant-Full Service	0.84	2,187	0.84	2,709		
Restaurant-Quick Serve	0.84	1,860	0.84	2,122		
Religious Worship	0.84	2,181				
Retail-Single	0.82	1,763	0.82	1,922		
School-Primary	0.99	1,738	0.99	2,031		
School-Secondary	0.96	1,704	0.96	1,869		
Service	0.85	2,684				
Strip Mall	0.85	1,757	0.85	1,908		
Supermarket	0.84	1,772	0.84	2,140		
Warehouse	0.78	687	0.78	1,111		

Table 2-14. Demand and Energy Consumption Coefficients in Brownsville (Weather Zone 4)

		Packaged a	and Split DX
Building Type	Mapped Building Type (to other Climate Zones)	Demand Coefficients	Energy Coefficients
Small Office	Office – Small	0.87	1,787
Office – Medium	Office – Medium	N	/A
Large Office	Office – Large	1.16	2,316
School	School – Primary	0.95	1,572
School	School – Secondary	0.95	1,572
College	College	0.99	1,804
Clinic – Out Patient	Clinic – Out Patient	N/A	
Hospital	Hospital	N/A	
Retail	Retail – Single	0.95	1,830
Strip Mall	Strip Mall	N/A	
Grocery	Supermarket	1.07	2,079
Fast Food	Restaurant – Quick Service	0.99	2,771
Restaurant	Restaurant – Full Service	0.90	2,105
Apartment – Midrise	Apartment – Midrise	N/A	
Motel	Hotel – Small	1.07	1,691
Hotel	Hotel – Large	0.79	1,825
Warehouse	Warehouse	0.85	1,985
Public Assembly		0.93	1,731

Table 2-15. Demand and Energy Consumption Coefficients in El Paso for Air Cooled Systems (Weather Zone 5)

Note: The building types for the El Paso climate zone are different than those used for other Climate Zones. These have been mapped to the building types from Table 2-11 through Table 2-16 where possible.

Simplified M&V Methodology

A simplified M&V procedure involving the collection of one year of energy consumption data after the project is installed is available. To determine demand savings, the maximum equipment demand that occurs during the utility peak summer hours must be measured. This can be accomplished with continuous demand metering or spot-metering during peak conditions. The simplified M&V procedure is to be used for HVAC projects that do not meet the requirements listed above in the Eligibility Criteria section. This report focuses on deemed savings approaches, and so details of this M&V methodology will not be discussed here.

Claimed Peak Demand Savings

This is a summer peaking measure. The peak demand definition for commercial split system and single packaged air conditioning and heat pumps has not been specified in any of the PUCT petitions or in the program manuals.

Measure Life and Lifetime Savings

The EUL and RULs for this HVAC equipment are provided below. The reader should refer to the definitions of effective useful life and remaining useful life in the glossary in Volume 1 for guidance on how to determine the decision type for system installations.

Effective Useful Life (EUL)

The EULs for Split and Packaged Air Conditioners and Heat Pumps are equal to 15 years²⁹ EUL's are used to estimate savings for replace on burnout decisions.

Remaining Useful Life (RUL)

The RUL of replaced systems is provided according to system age below, in Table 2-16. RUL estimates are needed, along with the EUL associated with the relevant ROB project, to estimate measure life for early retirement projects.

²⁹ PUCT Docket No. 36779.

Age in Years of Replaced System	Split and Packaged A/C and HP Systems [years]	Age in Years of Replaced System	Split and Packaged A/C and HP Systems [years]
5	10	15	2.8
6	9.1	16	2.5
7	8.2	17	2.2
8	7.3	18	1.9
9	6.5	19	1.7
10	5.7	20	1.5
11	5.0	21	1.3
12	4.4	22	1.1
13	3.8	23	1.0
14	3.3		·

Table 2-16. Remaining Useful Life of Replaced Systems (Early Retirement)³⁰

For early retirement (ER) projects in which the efficiency of the replacement system DOES NOT exceed the baseline or minimum standard efficiency level for ROB projects, the measure life will equal the RUL of the replaced equipment and savings will be calculated over the RUL period only.

For early retirement projects in which the efficiency of the replacement system DOES exceed the baseline efficiency level for ROB projects, the measure life will be calculated by considering the project to have two separate components:

- 1. An ER project that provides savings over the RUL of the replaced system defined by the incremental efficiency between the baseline efficiency for an ROB project and that of the replaced system, and
- 2. An ROB project that would have a standard EUL of 15 years, with savings defined by the incremental efficiency between that of the installed systems and the baseline efficiency.

Demand and energy savings are most simply calculated according to a single equation that encompasses the efficiency gain from the estimated efficiency of the replacement system (based on Table 2-7 and Table 2-10)) to that of the installed system. Since these two components have different measure lives, as weighted average measure life is estimated by weighting the RUL of the ER component with the incremental demand savings from the efficiency improvement from the replaced system to the baseline efficiency and weighting the EUL of the ROB component with the demand savings from the incremental efficiency between the baseline efficiency and that of the installed system. This is shown in the equation below.³¹

³⁰ PUCT Docket No. 40083, Attachment A describes the process in which the RUL of replaced systems has been calculated.

³¹ Equation 13 is pulled from PUCT Docket 40885.

 $Measure \ Life = \frac{RUL \times \Delta kW_{ER} + EUL_{ROB} \times \Delta kW_{ROB}}{\Delta kW_{ER} + \Delta kW_{ROB}}$

Equation 13

Where:

RUL	=	Remaining useful life of the replaced system
∆kW _{ER}	=	Demand savings from the efficiency improvement achieved by replacing the existing system with a baseline efficiency system
EUL _{ROB}	=	15 years, the EUL of a ROB project
∆kW _{ROB}	=	Efficiency increase between the baseline or minimum standard efficiency for a ROB project and the efficiency of the installed system.

The demand and energy savings that correspond to the measure life provided in the above equation are the sum of the demand and energy savings calculated with the efficiency improvements from the replaced system to baseline and from baseline efficiency to that of the installed system. Note that baseline efficiency referenced in the definitions for ER and ROB are what the efficiency rating for the project would have been if this were an ROB installation (i.e. either Code/Standard minimum efficiency, or industry standard practice).

Systems of Unknown Age

Systems of unknown age will use a deemed RUL of 2.2 years³²

Additional Calculators and Tools

Oncor Calculator: 2013 Cooling Equipment Inventory – Deemed Method - Commercial Programs. This calculator provides a deemed method to calculate energy and demand savings for all Oncor-approved HVAC measures. The calculator provides lookup tables for all approved measures.

Oncor Calculator: Cooling Equipment Inventory – Metered M&V Method. This calculator provides a method to calculate savings for all HVAC measures which lie outside of the scope of the deemed savings methodology.

Frontier A/C Evaluator (ACE) Calculator: This calculator is used by EPE. This provides a deemed method to calculated energy and demand savings.

CalcSmart Calculator: The HVAC CalcSmart calculator is used by the other Texas Utility Companies. This calculator provides a deemed method to calculate energy and demand savings for all approved HVAC measures. The calculator provides lookup tables for all approved measures.

³² PUCT Docket 40885. Table 18. Discussion with Frontier: This value is based on engineering judgment, and was chosen to represent a value that is out near the tail of the distribution.

Program Tracking Data & Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

Decision/Action Type Building Type Climate Zone Baseline Equipment Rated Capacity Baseline Number of Units Baseline Equipment Type Baseline Age of System Post-Retrofit Equipment Rated Capacity Post-Retrofit Equipment Rated Capacity Post-Retrofit Efficiency Rating Post-Retrofit Efficiency Rating Post-Retrofit Make & Model Post-Retrofit Equipment Type

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 36779 – Provides EUL for HVAC equipment.

- PUCT Docket 40083– Provides incorporation of Early Retirement savings for existing commercial HVAC SOP designs and updates for baseline equipment efficiency levels for ROB and New Construction projects involving package and split systems.
- PUCT Docket 40885 Provides a petition to revise deemed savings values for Commercial HVAC replacement measures. Items covered by this petition include the following:
- Updated baseline efficiencies use for estimating deemed savings for commercial PTAC/PTHP's, Room Air Conditioners and chilled water systems.
- Approved estimates of RUL of working chilled water systems.
- Updated demand and energy coefficients for all commercial HVAC systems.
- Updated EUL of centrifugal chilled water systems installed in ROB or New Construction projects.

- Provide a method for utilizing the early retirement concept developed in the petition in Docket No. 40083 for Packaged and Split DX systems and applied to chilled water systems when the age of the system being replaced cannot be ascertained.
- PUCT Docket 41070 Provides energy and demand savings coefficients for an additional climate zone, El Paso, TX. Previously these savings were taken from the Dallas-Fort Worth area, which has a colder winter, somewhat more moderate summer, more sunshine, and less precipitation than El Paso.

Relevant Standards and Reference Sources

ANSI/ASHRAE/IES Standard 90.1-2010. Energy Standard for Buildings Except Low-Rise Residential Buildings. Table 6.8.1A through Table 6.8.1D.

Document Revision History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

Table 2-17. Nonresidential HVAC Single-Zone AC-HP History

2.2.2 HVAC Chillers Measure Overview

TRM Measure ID: NR-HV-CH

Market Sector: Commercial

Measure Category: HVAC

Applicable Building Types: See Table 2-27 through Table 2-34

Fuels Affected: Electricity

Decision/Action Type: Replace on Burnout (ROB), Early Retirement (ER), and New Construction (NC)

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed Savings Calculation

Savings Methodology: Calculator, M&V

Measure Description

This document presents the deemed savings methodology for the installation of Chillers. This document covers assumptions made for baseline equipment efficiencies for early retirement (ER) based on the age of the replaced equipment, and replace-on-burnout (ROB) and new construction (NC) situations based on efficiency standards. It also provides estimates of baseline equipment efficiencies in the event that the actual age of the unit is unknown.

Applicable efficient measure types include³³:

Chillers (air-cooled centrifugal, water-cooled centrifugal, or air-cooled screw)

Compressors (centrifugal, screw, or reciprocating)

Eligibility Criteria

For a measure to be eligible for this deemed savings approach the following conditions must be met:

The existing and proposed cooling equipment are electric.

The project sponsor and utility agree on the correct climate zone to use for the calculation.

³³ Savings can also be claimed by a retrofit involving a change in equipment type (i.e. Air cooled packaged DX system to a water-cooled centrifugal chiller, or a split system air cooled heat pump to an air-cooled non-centrifugal chiller). In the event that this type of retrofit is performed, the tables from the following HVAC measure templates will need to be referenced:

[•] HVAC – Chillers

[•] Split System/Single Packaged Heat Pumps and Air Conditioners

Coefficients are listed in Table 2-27 through Table 2-34 for the type of building and climate zone in which the retrofit occurs and the type of equipment involved. The building falls into one of the categories listed in Table 2-27 through Table 2-34. In the event that one of these conditions are not met, the deemed savings approach cannot be used, and the Simplified M&V Methodology or the Full M&V Methodology must be used.

Early Retirement

Early retirement systems involve the replacement of a working system. Baseline efficiency is estimated according to the capacity, distribution system type, and year of manufacture of the replaced system. Baseline efficiency levels for systems installed between 1990 and 2012 are provided in Table 2-18 through Table 2-24.

Year Installed (Replaced System)	< 75 tons [EER]	≥ 75 to 150 tons [EER]	≥ 150 to 300 tons [EER]	≥ 300 tons [EER]	≥ 600 tons [EER]
> 2001 ³⁴	9.210	9.210	8.529	8.529	8.529
2002 - 2011	9.554	9.554	9.554	9.554	9.554
2012	9.562	9.562	9.562	9.562	9.562

Table 2-18. Baseline Efficiency of Centrifugal Air-cooled Chillers Replaced via Early Replacement

Table 2-19. Baseline Efficiency of Screw, Scroll and Reciprocating Air-Cooled Chillers Replaced via Early Replacement

Year Installed (Replaced System)	< 75 tons [EER]	≥ 75 to 150 tons [EER]	≥ 150 to 300 tons [EER]	≥ 300 tons [EER]	≥ 600 tons [EER]
>2001 ³⁴	9.210	9.210	8.529	8.529	8.529
2002 - 2011	9.554	9.554	9.554	9.554	9.554
2012	9.562	9.562	9.562	9.562	9.562

Table 2-20. Baseline Efficiency of Centrifugal Water-Cooled Chillers Replaced via Early Replacement

Year Installed (Replaced System)	< 75 tons [EER]	≥ 75 to 150 tons [EER]	≥ 150 to 300 tons [EER]	≥ 300 tons [EER]	≥ 600 tons [EER]
>2001 ³⁴	0.926	0.926	0.837	0.748	0.748
2002 - 2012	0.703	0.703	0.634	0.577	0.577

³⁴ PUCT Docket 40885 provides baseline efficiencies for Chillers replaced via early retirement programs, as shown in Table 2-18 - Table 2-21. These baseline efficiencies are only created for systems between 1990 and 2012, yet common practice in Texas is to allow systems older than 1990 to use the same baseline efficiencies as those listed for 1990-2001.

Table 2-21. Baseline Efficiency of Screw, Scroll and Reciprocating Water-Cooled Chillers Replaced via Early Replacement

Year Installed (Replaced System)	< 75 tons [EER]	≥ 75 to 150 tons [EER]	≥ 150 to 300 tons [EER]	≥ 300 tons [EER]	≥ 600 tons [EER]
>2001 ³⁴	0.926	0.926	0.837	0.748	0.748
2002 - 2012	0.790	0.790	0.718	0.639	0.639

Replace-on-Burnout (ROB) and New Construction (NC)

New baseline efficiency levels for and chillers are provided in Table 2-22. These baseline efficiency levels reflect the latest standards promulgated by ASHRAE and recently-adopted federal manufacturing standards.

Table 2-22. Baseline Efficiency Levels for ROB and NC HVAC Units (Air Conditioners, Heat Pumps, and Water- and Air-Cooled Chillers)

Sys	stem Type	Capacity [Tons]	Baseline Efficiency	Source
		< 75	9.562 EER	IECC 2009
		75-150	9.562 EER	IECC 2009
	Centrifugal	150-300	9.562 EER	IECC 2009
		300-600	9.562 EER	IECC 2009
Air-Cooled Chiller		≥ 600	9.562 EER	IECC 2009
All-Cooled Chiller		< 75	9.562 EER	IECC 2009
		75-150	9.562 EER	IECC 2009
	Screw/Scroll/ Reciprocating	150-300	9.562 EER	IECC 2009
		300-600	9.562 EER	IECC 2009
		≥ 600	9.562 EER	IECC 2009
		< 75	0.703 kW/ton	ASHRAE 90.1-1999
		75-150	0.703 kW/ton	ASHRAE 90.1-1999
	Centrifugal	150-300	0.634 kW/ton	ASHRAE 90.1-1999
		300-600	0.577 kW/ton	ASHRAE 90.1-1999
Water-Cooled Chiller		≥ 600	0.577 kW/ton	ASHRAE 90.1-1999
Water-Cooled Chiller		< 75	0.790 kW/ton	ASHRAE 90.1-1999
		75-150	0.790 kW/ton	ASHRAE 90.1-1999
	Screw/Scroll/ Reciprocating	150-300	0.718 kW/ton	ASHRAE 90.1-1999
		300-600	0.639 kW/ton	ASHRAE 90.1-1999
		≥ 600	0.639 kW/ton	ASHRAE 90.1-1999

Systems of Unknown Age

Table 2-23 through Table 2-29 provides failure probability weighted average efficiency levels for packaged and split DX air conditioners and heat pumps and chilled water systems of unknown age. These are provided as SEER, EER, or kW/ton efficiencies, by equipment type and program year.

Table 2-23. Weighted Average Efficiency [EER] of non-Centrifugal Air-Cooled Chillers of
Undetermined Age

Size [tons]	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
< 150	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.3	9.3	9.4
≥ 150 to < 300	8.5	8.5	8.5	8.5	8.5	8.5	8.6	8.7	8.8	8.9	9.0
≥ 300	8.5	8.5	8.5	8.5	8.5	8.5	8.6	8.7	8.8	8.9	9.0

Table 2-24. Weighted Average Efficiency [EER] of Centrifugal Air-Cooled Chillers of Undetermined Age

Size [tons]	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
< 150	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2
≥ 150 to < 300	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.6
≥ 300	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.6

Table 2-25. Weighted Average Efficiency [kW/ton] of non-Centrifugal Water-Cooled Chillers of Undetermined Age

Size [tons]	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
< 75	0.92	0.92	0.92	0.92	0.92	0.92	0.90	0.88	0.86	0.84	0.82
	6	6	6	6	6	6	8	8	8	6	5
≥ 75 to < 150	0.83	0.83	0.83	0.83	0.83	0.83	0.82	0.80	0.78	0.76	0.74
	7	7	7	7	7	7	1	3	4	4	5
≥ 150 to < 300	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.82
	7	7	7	7	7	7	7	7	7	7	2
≥ 300 to < 600	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.73
	8	8	8	8	8	8	8	8	8	8	6
≥600	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.73
	8	8	8	8	8	8	8	8	8	8	6

Size [tons]	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
< 75	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.91
	6	6	6	6	6	6	6	6	6	6	0
≥ 75 to < 150	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.91
	6	6	6	6	6	6	6	6	6	6	0
≥ 150 to < 300	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.82
	7	7	7	7	7	7	7	7	7	7	2
≥ 300 to < 600	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.73
	8	8	8	8	8	8	8	8	8	8	6
≥600	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.73
	8	8	8	8	8	8	8	8	8	8	6

 Table 2-26: Weighted Average Efficiency [kW/ton] of Water-Cooled Centrifugal Chillers of

 Undetermined Age

High-Efficiency Condition

New Construction

The scope of the project for which incentives are requested is limited to individual pieces of equipment (e.g. two 500 ton chillers and not entire building systems)

Early Retirement and Replace on Burnout

The high-efficiency retrofits must meet the following criteria³⁵:

- Must be within 80% to 120% of the replaced electric cooling capacity
- No additional measures are being installed that directly affect the operation of the cooling equipment (i.e., control sequences, cooling towers, and condensers).

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Peak Demand Savings (kW) = Tons
$$\times (a \times \eta_{baseline} - b \times \eta_{retrofit})$$

Equation 14

Energy Savings (kWh) = Tons × (
$$c \times \eta_{baseline} - d \times \eta_{retrofit}$$
)

Equation 15

Where:

³⁵ From PUCT Docket #41070

Tons	=	Rated equipment cooling capacity at AHRI standard conditions (of the smallest unit to be installed or removed)
$\eta_{\textit{baseline}}$	=	Efficiency of existing equipment (ER) or standard equipment (ROB/NC) (kW/Ton)
$\eta_{\textit{retrofit}}$	=	Rated efficiency of the newly installed equipment (kW/Ton) - (Must exceed ICEE 2009)
a,b	=	Demand coefficients for appropriate climate zone, building type, and new and standard equipment types, see Table 2-27 through Table 2-34
c,d	=	Energy coefficients for appropriate climate zone, building type, and new and standard equipment types, see Table 2-27 throughTable 2-34

Adjustments for Auxiliary Equipment³⁶:

The equipment efficiency for an air-cooled chiller includes condenser fans, but the equipment efficiency for a water-cooled chiller does not include the condenser water pump and cooling tower. Therefore, the savings must be reduced, in the event that an air-cooled chiller is replaced with a water-cooled chiller, to account for the peak demand and energy consumption of the water-cooled system's additional equipment. This type of retrofit is possible in ROB and ER situations. The following equations are used:

$$kW_{CW\,pump\,\&\,CT\,fan} = \left(HP_{CW\,pump} + HP_{CT\,fan}\right) \times \frac{0.746}{0.86} \times 0.80$$

$$kWh_{CW pump \& CT fan} = kW_{CW pump \& CT fan} \times 8,760$$

Equation 17

Equation 16

Where:

HP _{CW pump}	=	Horsepower of the condenser water pump
HP _{CT fan}	=	Horsepower of the cooling tower fan
0.746	=	Conversion from HP to kW
0.86	=	Assumed equipment efficiency
0.80	=	Assumed load factor
8,760	=	Annual run time hours

³⁶ This extra adjustment is noted in PUCT Docket No. 41070.

The energy and demand of the condenser water pump and cooling tower fans are subtracted from the final savings, to reach the net savings:

$$kW_{savings,net} = kW - kW_{CW pump \& CT fan}$$

Equation 18

$$kWh_{savings,net} = kWh - kWh_{CW\,pump\,\&CT\,fan}$$

Equation 19

Table 2-21 through Table 2-24 provide efficiency ratings for baseline equipment. In some cases, the efficiency ratings are given in terms of SEER, EER, COP or kW/ton. In the cases where the efficiency is not provided in terms of kW/ton, a conversion to kW/ton needs to be performed, using the following conversion calculations:

$$\frac{kW}{Ton} = \frac{12}{EER}$$

Equation 20

$$\frac{kW}{Ton} = \frac{3.516}{COP}$$

Equation 21

 $\frac{kW}{Ton} = \frac{12}{SEER \times 0.697 + 2.0394}$

Equation 22

Table 2-31 reflects tables showing demand and energy coefficients. These HVAC coefficients are calculated in Docket No. 40885, by climate zone, building type, and equipment type. A description of the calculation method can also be found in Docket No. 40885, Attachment B.

Peak Demand Definition

A peak demand definition for commercial split system and single packaged air conditioning and heat pumps has not been specified in any of the PUCT-petitions or in the program manuals.

Simplified M&V Methodology

A simplified M&V procedure is also available to determine energy savings, to be used for projects that do not meet the requirements listed above in the Eligibility Criteria section. This procedure involves collection of one year of consumption data after the project is complete. To determine demand savings, the maximum equipment demand that occurs during the utility peak summer hours must be measured. This can be accomplished with continuous demand metering or spot-metering during peak conditions. This report focuses on deemed savings approaches, and so details of this M&V methodology will not be discussed here.

Deemed Energy and Demand Savings Tables

	Chiller								
Building Type	Air C	ooled	Water Cooled						
	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients					
College	0.87	1,115	0.68	1,243					
Grocery			0.67	1,892					
Hospital	0.86	2,873	0.74	3,545					
Hotel – Large	0.77	1,965	0.72	2,396					
Nursing Home	0.87	1,230	0.65	1,260					
Office – Large	0.92	1,710	0.82	2,104					
Public Assembly	0.87	1,404	0.65	1,444					
Religious Worship	0.82	848	0.67	856					
School - Secondary	0.82	1,028	0.75	1,244					

Table 2-27. Demand and Energy Consumption Coefficients in Amarillo (Weather Zone 1)

Note: These values have come from both Docket 40885 and Docket 30331. Coefficients were updated with Docket 40885, but not all building types that were originally available in Docket 30331 were updated in Docket 40885. For those building types that did not have updated coefficients, their values remained in use from Docket 30331.

	Chiller								
Building Type	Air C	ooled	Water Cooled						
	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients					
College	0.89	1,587	0.81	1,761					
Grocery			0.87	2,708					
Hospital	0.96	3,574	0.83	4,323					
Hotel – Large	0.82	2,596	0.80	3,159					
Nursing Home	0.90	1,744	0.82	1,854					
Office – Large	0.92	1,710	0.82	2,104					
Public Assembly	0.90	2,005	0.84	2,116					
Religious Worship	0.88	1,355	0.83	1,396					
School - Secondary	0.88	1,333	0.84	1,669					

Table 2-28. Demand and Energy Consumption Coefficients in Fort Worth (Weather Zone 2)

	Chiller				
Building Type	Air C	Air Cooled		Cooled	
building Type	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients	
College	0.80	1,858	0.84	2,099	
Grocery			0.88	3,012	
Hospital	0.82	3,753	0.81	4,708	
Hotel – Large	0.76	2,690	0.82	3,475	
Nursing Home	0.80	1,960	0.84	2,172	
Office – Large	0.79	1,680	0.82	2,185	
Public Assembly	0.81	2,264	0.86	2,482	
Religious Worship	0.83	1,474	0.84	1,594	
School - Secondary	0.78	1,297	0.82	1,726	

Table 2-29. Demand and Energy Consumption Coefficients in Houston (Weather Zone 3)

Note: These values have come from both Docket 40885 and Docket 30331. Coefficients were updated with Docket 40885, but not all building types that were originally available in Docket 30331 were updated in Docket 40885. For those building types that did not have updated coefficients, their values remained in use from Docket 30331.

	Chiller				
Building Type	Air Cooled		Water Cooled		
	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients	
College	0.80	2,340	0.87	2,583	
Grocery			0.85	3,603	
Hospital	0.85	4,208	0.80	5,160	
Hotel – Large	0.90	3,575	0.82	3,969	
Nursing Home	0.80	2,634	0.85	2,890	
Office – Large	0.85	2,018	0.83	2,562	
Public Assembly	0.80	2,857	0.85	3,085	
Religious Worship	0.81	1,754	0.85	1,907	
School - Secondary	0.81	1,614	0.85	2,094	

Table 2-30. Demand and Energy Consumption Coefficients in Brownsville (Weather Zone 4)

		Chiller			
Building Type	Mapped Building Type (to other	Air C	ooled	Water Cooled	
Bunung Type	Climate Zones)	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients
Small Office	Office – Small	0.88	1,614	0.99	1,873
Large Office	Office – Large	1.05	2,134	1.01	2,213
School	School – Primary	0.87	979	0.93	1,141
School	School – Secondary	0.87	979	0.93	1,141
College	College	0.93	1,278	0.96	1,458
Hospital	Hospital	0.97	2,225	0.98	2,705
Retail	Retail – Single	0.86	1,553	0.77	1,781
Grocery	Grocery – Supermarket		·	0.83	2,468
Hotel	Hotel – Large	0.78	1,844	0.70	1,996
Warehouse	Warehouse	0.80	1,161	0.82	1,381
Public Assembly	Public Assemble	0.77	1,724	0.74	2,013

Table 2-31. Demand and Energy Consumption Coefficients in El Paso (Weather Zone 5)

Note: The building types for El Paso climate zone are different than those used for other Climate Zones. These have been mapped to the building types from Table 2-11 through Table 2-16 where possible.

Measure Life and Lifetime Savings

Effective Useful Life (EUL)

The EUL of HVAC equipment are provided below:

Screw / Scroll / Reciprocating Chillers – 20 years³⁷

Centrifugal Chillers – 25 years³⁸

Remaining Useful Life (RUL)

The RUL of replaced systems is provided according to system age below in Table 2-32.

Age in Years of Replaced System	Non- Centrifugal Chilled Water Systems	Centrifugal Chilled Water Systems	Age in Years of Replaced System	Non- Centrifugal Chilled Water Systems	Centrifugal Chilled Water Systems
5	14.7	19.9	21	3.2	6.6

³⁷ PUCT Docket No. 36779.

³⁸ PUCT Docket No. 40885.

Age in Years of Replaced System	Non- Centrifugal Chilled Water Systems	Centrifugal Chilled Water Systems	Age in Years of Replaced System	Non- Centrifugal Chilled Water Systems	Centrifugal Chilled Water Systems
6	13.7	18.9	22	2.9	6.3
7	12.7	17.9	23	2.6	5.9
8	11.8	16.9	24	2.4	5.6
9	10.9	15.9	25	2.1	5.4
10	10.0	14.9	26	1.9	5.1
11	9.1	13.9	27	1.8	4.9
12	8.3	12.9	28	1.6	4.7
13	7.5	11.9	29	1.5	4.5 ³⁹
14	6.8	10.9	30	1.3	4.3
15	6.2	10.1	31	1.2	4.1
16	5.5	9.3	32		4
17	5.0	8.7	33		3.8
18	4.5	8.1	34		3.7
19	4.0	7.5	35		3.6
20	3.6	7.1	36		3.5

For early retirement projects in which the efficiency of the replacement system DOES NOT exceed the baseline efficiency level for ROB projects, the measure life will equal the RUL of the replaced chilled water system.

For early retirement projects in which the efficiency of the replacement system DOES exceed the baseline efficiency level for ROB projects, the measure life will be calculated by considering the project to have two separate components:

- An ER project that provides savings over the RUL of the replaced system defined by the incremental efficiency between the baseline efficiency and that of the replaced system, and
- An ROB project that would have a standard EUL of 15 years, with savings defined by the incremental efficiency between that of the installed systems and the baseline efficiency.

Demand and energy savings are most simply calculated according to a single equation that encompasses the efficiency gain from the efficiency of the replaced system to that of the installed system. Since these two components have different measure lives, as the weighted average measure life is estimated by weighing the RUL of the ER component with the

³⁹ The correct value is listed in this table, and differs from Table 5 of PUC Petition 40885 due to a typographical error in the petition.

incremental demand savings from the efficiency improvement from the replaced system to the baseline efficiency and weighting the EUL of the ROB component with the demand savings from the incremental efficiency between the baseline efficiency and that of the installed system. This is shown in the equation below.⁴⁰

$$Measure \ Life = \frac{RUL \times \Delta kW_{ER} + EUL_{ROB} \times \Delta kW_{ROB}}{\Delta kW_{ER} + \Delta kW_{ROB}}$$

Equation 23

Where:

RUL	=	Remaining useful life of the replaced system
∆kW _{ER}	=	Demand savings from the efficiency improvement achieved by replacing the existing system with a baseline efficiency system
EUL _{ROB}	=	20 (non-centrifugal) or 25 (centrifugal) years, the EUL of a ROB project
∆kW _{ROB}	=	Efficiency increase between the baseline efficiency for a ROB project and the efficiency of the installed system.

The demand and energy savings that correspond to the measure life provided in the above equation are the sum of the demand and energy savings calculated with the efficiency improvements from the replaced system to baseline and from baseline efficiency to that of the installed system. Note that baseline efficiency referenced in the definitions for ER and ROB are what the efficiency rating for the project would have been if this were an ROB installation (i.e. either Code/Standard minimum efficiency, or industry standard practice).

Systems of Unknown Age

Systems of unknown age will use a deemed RUL as shown in Table 2-33.

Table 2-33. R	Remaining Useful Lives	s of Systems of Undetermine	d Age
---------------	------------------------	-----------------------------	-------

System Type	RUL [years]
Non-Centrifugal Chillers	3.2
Centrifugal Chillers	5.1

⁴⁰ Equation 23 is pulled from PUCT Docket 40885.

Additional Calculators and Tools.

Oncor Calculator: 2013 Cooling Equipment Inventory – Deemed Method - Commercial Programs. This calculator provides a deemed method to calculate energy and demand savings for all Oncor-approved HVAC measures. The calculator provides lookup tables for all approved measures.

Oncor Calculator: Cooling Equipment Inventory – Metered M&V Method. This calculator provides a method to calculate savings for all HVAC measures which lie outside of the scope of the deemed savings methodology.

Frontier A/C Evaluator (ACE) Calculator: This calculator is used by EPE. This provides a deemed method to calculated energy and demand savings.

CalcSmart Calculator: The HVAC CalcSmart calculator is used by the other Texas Utility Companies. This calculator provides a deemed method to calculate energy and demand savings for all approved HVAC measures. The calculator provides lookup tables for all approved measures.

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

Decision/Action Type Building Type Climate Zone Baseline Equipment Rated Capacity Baseline Number of Units Baseline Number of Units Baseline Efficiency Rating Baseline Make & Model Baseline Equipment Type Baseline Age of System Post-Retrofit Equipment Rated Capacity Post-Retrofit Equipment Rated Capacity Post-Retrofit Efficiency Rating Post-Retrofit Efficiency Rating Post-Retrofit Efficiency Rating

References and Efficiency Standards

Petitions and Rulings

- PUCT Docket 36779 Provides EUL for HVAC equipment.
- PUCT Docket 40083– Provides incorporation of Early Retirement savings for existing commercial HVAC SOP designs and updates for baseline equipment efficiency levels for ROB and New Construction projects involving package and split systems.
- PUCT Docket 40885 Provides a petition to revise deemed savings values for Commercial HVAC replacement measures. Items covered by this petition include the following:
- Updated baseline efficiencies use for estimating deemed savings for commercial PTAC/PTHP's, Room Air Conditioners and chilled water systems.

Approved estimates of RUL of working chilled water systems.

- Updated demand and energy coefficients for all commercial HVAC systems.
- Updated EUL of centrifugal chilled water systems installed in ROB or New Construction projects.
- Provide a method for utilizing the early retirement concept developed in the petition in Docket No. 40083 for Packaged and Split DX systems and applied to chilled water systems when the age of the system being replaced cannot be ascertained.
- PUCT Docket 41070 Provides energy and demand savings coefficients for an additional climate zone, El Paso, TX. Previously these savings were taken from the Dallas-Fort Worth area, which has a colder winter, somewhat more moderate summer, more sunshine, and less precipitation than El Paso.

Relevant Standards and Reference Sources

ASHRAE Standard 90.1-1999. Table 6.2.1C.

ANSI/ASHRAE/IES Standard 90.1-2010. Energy Standard for Buildings except Low-Rise Residential Buildings. Table 6.8.1A through Table 6.8.1D.

Document Revision History

Table 2-34. Nonresidential HVAC-Chillers History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.2.3 Packaged Terminal Air Conditioners, Heat Pumps and Room Air Conditioners Measure Overview

TRM Measure ID: NR-HV-PT Market Sector: Commercial Measure Category: HVAC Applicable Building Types: Hotel - Small Fuels Affected: Electricity Decision/Action Type: Replace on Burnout (ROB) and New Construction (NC) Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Calculations Savings Methodology: Calculator

Measure Description

This section presents the deemed savings methodology for the installation of Packaged Terminal Air Conditioners (PTAC), Packaged Terminal Heat Pumps (PTHP), and Room AC systems. This document covers assumptions made for baseline equipment efficiencies for replace-on-burnout (ROB) and new construction (NC) situations based on efficiency standards. It also provides estimates of baseline equipment efficiencies in the event that the actual age of the unit is unknown.

Applicable efficient measure types include:

Packaged terminal air conditioners and heat pumps

Room air conditioners

Eligibility Criteria

For a measure to be eligible for this deemed savings approach the following conditions will be met:

The existing and proposed cooling equipment are electric

- The project sponsor and utility agree on the correct climate zone to use for the calculation
- Coefficients are listed in Table 2-37 for the type of building and climate zone in which the retrofit occurs and the type of equipment involved

The building must be for Hotel – Small

In the event that one of these conditions are not met, the deemed savings approach cannot be used, and the Simplified M&V Methodology or the Full M&V Methodology must be used.

Baseline Condition

Table 2-35 provides baseline efficiency standards for PTAC and PTHP units, reflecting the levels promulgated in IECC 2009.

Table 2-36 reflects the standards for Room Air Conditioners, also updated in IECC 2009.

Mode	Rating Condition Outside Air ⁰F db	Minimum Efficiency ⁴¹	Efficiency Rating
PTAC Cooling (NC)	95	$12.5 - (0.213 \times \frac{\text{Cap}}{1000})$	
PTAC Cooling (ROB)	95	$10.9 - (0.213 imes rac{Cap}{1000})$	EER
PTHP Cooling (NC)	95	$12.3 - \left(0.213 \times \frac{\text{Cap}}{1000}\right)$	LEN
PTHP Cooling (ROB)	95	$10.8 - (0.213 \times \frac{\text{Cap}}{1000})$	
PTHP Heating (NC)		$3.2 - (0.026 imes rac{Cap}{1000})$	COP
PTHP Heating (ROB)		$2.9 - (0.026 imes rac{Cap}{1000})$	COP

Table 2-35. Baseline Efficiency Levels for PTAC/PTHP ROB and NC Units

⁴¹ From IECC 2009, Table 503.2.3(3). Cap means the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7,000 Btu/h, use 7,000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculation.

Category	Capacity [Btuh]	Minimum Efficiency [EER]
	< 6,000	9.7
	≥ 6,000 and < 8,000	9.7
Without reverse cycle, with louvered sides	≥ 8,000 and < 14,000	9.8
	≥ 14,000 and < 20,000	9.7
	≥ 20,000	8.5
	< 6,000	9.0
Without reverse cycle, without louvered sides	≥ 6,000 and < 20,000	8.5
	≥ 20,000	8.5
With reverse cycle, with louvered	< 20,000	9.0
sides	≥ 20,000	8.5
With reverse cycle, without	< 14,000	8.5
louvered sides	≥ 14,000	8.0

Table 2-36: Baseline Efficiency Levels for Room Air Conditioners ROB and NC Units

High-Efficiency Condition

The high-efficiency retrofits must meet the following criteria⁴²:

Must be within 80% to 120% of the replaced electric cooling capacity

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Peak Demand Savings (kW) = Tons × $(a \times \eta_{baseline} - b \times \eta_{retrofit})$

Equation 24

Energy Savings
$$(kWh) = Tons \times (c \times \eta_{baseline} - d \times \eta_{retrofit})$$

Equation 25

Where:

Tons	=	Rated equipment cooling capacity at AHRI standard conditions (of the smallest unit to be installed or removed)
η_{baseline}	=	Efficiency of standard equipment (kW/Ton)

⁴² From PUCT Docket #41070

$\eta_{\textit{retrofit}}$	=	Rated efficiency of the newly installed equipment (kW/Ton) - (Must exceed ICEE 2009)
a,b	=	Demand coefficients for appropriate climate zone, building type, and new and standard equipment types, see Table 2-37.
c,d	=	Energy coefficients for appropriate climate zone, building type, and new and standard equipment types, see Table 2-37.

Table 2-35 and Table 2-40 provide efficiency ratings for baseline equipment. In some cases, the efficiency ratings are given in terms of SEER or EER. A conversion to kW/ton needs to be performed, using the following conversion calculations

$$\frac{kW}{Ton} = \frac{12}{EER}$$
Equation 26
$$\frac{kW}{Ton} = \frac{3.516}{COP}$$
Equation 27

Table 2-37 reflects tables showing demand and energy coefficients. These HVAC coefficients are calculated in Docket No. 40885, by climate zone, building type, and equipment type. A description of the calculation method can also be found in Docket No. 40885, Attachment B.

Peak Demand Definition

A peak demand definition for commercial package terminal units or room air conditioners has not been specified in any of the PUCT-petitions or in the program manuals.

Simplified M&V Methodology

The simplified M&V procedure involves collection of one year of consumption data after the project is complete. To determine demand savings, the maximum equipment demand that occurs during the utility peak summer hours must be measured. This can be accomplished with continuous demand metering or spot-metering during peak conditions.

The simplified M&V procedure is to be used for projects that do not meet the requirements listed above in the Ineligibility Criteria section.

Deemed Energy and Demand Savings Tables

	Packaged Terminal Unit						
Climate Zone	Air Con	ditioner	Heat Pump				
Climate Zone	Demand Coefficients	Energy Coefficients	Demand Coefficients	Energy Coefficients			
Amarillo (Weather Zone 1)	0.51	1,359	0.51	1,720			
Fort Worth (Weather Zone 2)	0.61	1,834	0.61	2,042			
Houston (Weather Zone 3)	0.55	1,992	0.55	2,035			
Brownsville (Weather Zone 4)	0.49	2,223	0.49	2,273			
El Paso ⁴¹	0.61	1,834	0.61	2,042			

Table 2-37: Demand and Energy Consumption Coefficients by Climate Zone for Hotel – SmallBuilding Type43

Measure Life and Lifetime Savings

The EUL of High Efficiency Window and Room Air Conditioners is 13 years⁴⁴

Additional Calculators and Tools.

Oncor Calculator: 2013 Cooling Equipment Inventory – Deemed Method - Commercial Programs. This calculator provides a deemed method to calculate energy and demand savings for all Oncor-approved HVAC measures. The calculator provides lookup tables for all approved measures.

Oncor Calculator: Cooling Equipment Inventory – Metered M&V Method. This calculator provides a method to calculate savings for all HVAC measures which lie outside of the scope of the deemed savings methodology.

Frontier A/C Evaluator (ACE) Calculator: This calculator is used by EPE. This provides a deemed method to calculated energy and demand savings. The calculator could not be fully evaluated as it was protected, and many features were unavailable.

CalcSmart Calculator: The HVAC CalcSmart calculator is used by the other Texas Utility Companies. This calculator provides a deemed method to calculate energy and demand savings for all approved HVAC measures. The calculator provides lookup tables for all approved measures.

⁴³ Docket No. 40885 provides demand and energy savings by building type and cooling equipment for the four different climate zones. This original petition was dated 10/29/2012. An amended petition, dated 11/13/2012 was approved, which provides the original energy and demand coefficients (Table 2-11 through Table 2-16, but also amended Tables (B3a through B3d and B4a through B4d)

⁴⁴ PUCT Docket No. 36779.

Program Tracking Data & Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

Decision/Action Type Building Type Climate Zone Baseline Equipment Rated Capacity Baseline Number of Units Baseline Number of Units Baseline Efficiency Rating Baseline Make & Model Baseline Equipment Type Baseline Age of System Post-Retrofit Equipment Rated Capacity Post-Retrofit Number of Units Post-Retrofit Efficiency Rating

Post-Retrofit Make & Model

Post-Retrofit Equipment Type

References and Efficiency Standards

Petitions and Rulings

- PUCT Docket 36779 Provides EUL for HVAC equipment.
- PUCT Docket 40083– Provides incorporation of Early Retirement savings for existing commercial HVAC SOP designs and updates for baseline equipment efficiency levels for ROB and New Construction projects involving package and split systems.
- PUCT Docket 40885 Provides a petition to revise deemed savings values for Commercial HVAC replacement measures. Items covered by this petition include the following:
- Updated baseline efficiencies use for estimating deemed savings for commercial PTAC/PTHP's, Room Air Conditioners and chilled water systems.

Approved estimates of RUL of working chilled water systems.

Updated demand and energy coefficients for all commercial HVAC systems.

- Updated EUL of centrifugal chilled water systems installed in ROB or New Construction projects.
- Provide a method for utilizing the early retirement concept developed in the petition in Docket No. 40083 for Packaged and Split DX systems and applied to chilled water systems when the age of the system being replaced cannot be ascertained.
- PUCT Docket 41070 Provides energy and demand savings coefficients for an additional climate zone, El Paso, TX. Previously these savings were taken from the Dallas-Fort Worth area, which has a colder winter, somewhat more moderate summer, more sunshine, and less precipitation than El Paso.

Relevant Standards and Reference Sources

- ANSI/ASHRAE/IES Standard 90.1-2010. Energy Standard for Buildings Except Low-Rise Residential Buildings. Table 6.8.1A through Table 6.8.1D.
- International Energy Conservation Code (IECC). Table 503.2.3(1) through Table 503.2.3(7). 2009

Document Revision History

Table 2-38: Nonresidential HVAC PTAC-PTHP History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.2.4 HVAC Variable Frequency Drive (VFD) on Air Handler Unit (AHU) Supply Fans Measure Overview

TRM Measure ID: NR-HV-VF

Market Sector: Commercial

Measure Category: HVAC

Applicable Building Types: See Table 2-39 though Table 2-41

Fuels Affected: Electricity

Decision/Action Type: Retrofit (RET)

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed Savings Values

Savings Methodology: Look-up Tables (fan type, motor hp, Climate Zone, Building Type)

Measure Description

This measure involves the installation of a VFD on an existing AHU supply fan to replace either outlet damper or inlet guide vane part-load control. The fan is in a variable air volume (VAV) system with terminal VAV boxes. This measure accounts for the interactive air-conditioning demand savings during the utility defined peak period. The savings are on a per-HP basis.

Eligibility Criteria

Supply fans may not have variable pitch. New construction and constant-volume systems are ineligible. Supply fans must be less than or equal to 100 HP.

Baseline Condition

The baseline is a centrifugal supply fan with a single-speed motor, a direct expansion (DX) airconditioning (AC) unit, and VAV boxes. The motor is a standard efficiency motor based on ASHRAE Standard 90.1-2004 or other specific standards. The AC unit has standard cooling efficiency based on ASHRAE 90.1-2004. The part-load fan control is either an outlet damper, inlet damper or inlet guide vane.

High-Efficiency Condition

The high efficiency condition is an installation of a VFD on an AHU supply fan. The existing damper or inlet guide vane will be removed or set completely open permanently after installation. The VFD will maintain a constant static pressure by adjusting fan speed and delivery the same amount of air as the baseline condition.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

$$kW_{full} = 0.746 \times HP \times \frac{LF}{\eta}$$

Equation 28

$$kW_i = kW_{full} \times \% power$$

Equation 29

$$kWh = \sum_{i=1}^{8760} kW_i \times schedule_i$$

Equation 30

Annual Energy Savings $[kWh] = kWh_{baseline} - kWh_{new}$

Equation 31

$$Demand Savings [kW] = (CF_{baseline} \times kW_{baseline} - CF_{new} \times kW_{new}) + (CF_{baseline} \times kW_{baseline} - CF_{new} \times kW_{new}) \times \frac{3.412}{Cooling_{SEER}}$$

Equation 32

Where:

HP	=	Rated horsepower of the motor
LF	=	Load factor – ratio of the operating load to the nameplate rating of the motor
η	=	Motor efficiency – the motor is assumed a standard efficiency motor
0.746	=	HP to kW conversion factor
%power	=	Percentage of full load power calculated by an equation based on the control type (outlet damper, inlet box damper, inlet guide vane, VFD).
schedule _i	=	1 when building is occupied, 0.2 when building is unoccupied.
<i>CF</i> _{baseline}	=	$\frac{Total_{kWh}}{kW_{baseline} \times 510}$ during the utility defined peak period (510 hours total)
<i>kW_{baseline}</i>	=	Maximum baseline demand during the utility defined peak period
CF _{new}	=	$\frac{Total_{kWh}}{kW_{new} \times 510}$ during the utility defined peak period (510 hours total)

kW_{new} = *Maximum post-installation demand during the utility defined peak period*

 $Cooling_{SEER}$ = Air conditioner cooling efficiency, assumed at 11.2

Deemed Energy and Demand Savings Tables

 Table 2-39: Deemed Energy and Demand Savings Values for Outlet Damper Part-Load Fan Control

 by Climate Region

НР	Dal	Dallas		El Paso Houston			San Antonio		Amarillo	
	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
Hospital & HealthCare										
1	0.063	1,081	0.084	1,111	0.094	1,079	0.073	1,067	0.105	1,177
2	0.136	2,135	0.168	2,196	0.178	2,132	0.136	2,109	0.21	2,325
3	0.189	3,090	0.241	3,178	0.252	3,085	0.199	3,052	0.304	3,366
5	0.315	5,091	0.388	5,236	0.42	5,083	0.336	5,028	0.504	5,544
7.5	0.472	7549	0.587	7764	0.629	7537	0.493	7456	0.755	8222
10	0.619	9,952	0.766	10,235	0.829	9,936	0.661	9,829	0.997	10,838
15	0.923	14,646	1.133	15,064	1.217	14,623	0.965	14,465	1.458	15,951
20	1.227	19,529	1.511	20,085	1.626	19,497	1.29	19,287	1.951	21,268
25	1.521	24,196	1.867	24,885	2.014	24,157	1.594	23,896	2.413	26,351
30	1.804	28,814	2.224	29,635	2.392	28,768	1.899	28,457	2.874	31,380
40	2.392	38,127	2.948	39,214	3.168	38,066	2.518	37,655	3.808	41,523
50	2.99	47,659	3.682	49,017	3.965	47,583	3.147	47,069	4.762	51,904
60	3.567	56,822	4.385	58,441	4.72	56,731	3.745	56,118	5.675	61,883
75	4.427	70,572	5.455	72,583	5.864	70,459	4.658	69,698	7.049	76,858
100	5.906	94,096	7.269	96,777	7.815	93,946	6.21	92,930	9.399	102,477
					Office - La	arge				
1	0.063	516	0.084	531	0.094	515	0.073	510	0.105	571
2	0.136	1,019	0.168	1,049	0.178	1,018	0.136	1,008	0.21	1,129
3	0.189	1,475	0.241	1,519	0.252	1,474	0.199	1,458	0.304	1,634
5	0.315	2,430	0.388	2,502	0.42	2,428	0.336	2,402	0.504	2,692
7.5	0.472	3,603	0.587	3711	0.629	3600	0.493	3562	0.755	3991
10	0.619	4,749	0.766	4,892	0.829	4,745	0.661	4,696	0.997	5,262
15	0.923	6,990	1.133	7,199	1.217	6,984	0.965	6,911	1.458	7,744
20	1.227	9,320	1.511	9,599	1.626	9,312	1.29	9,215	1.951	10,325
25	1.521	11,547	1.867	11,893	2.014	11,537	1.594	11,418	2.413	12,793
30	1.804	13,751	2.224	14,163	2.392	13,739	1.899	13,597	2.874	15,234
40	2.392	18,195	2.948	18,741	3.168	18,180	2.518	17,992	3.808	20,159
50	2.990	22,744	3.682	23,426	3.965	22,725	3.147	22,490	4.762	25,198
60	3.567	27,117	4.385	27,930	4.72	27,094	3.745	26,814	5.675	30,043
75	4.427	33,679	5.455	34,689	5.864	33,651	4.658	33,302	7.049	37,313
100	5.906	44,905	7.269	46,252	7.815	44,868	6.21	44,403	9.399	49,751
					Office - Si					
1	0.052	466	0.073	480	0.073	463	0.063	461	0.094	517
	0.105	921	0.136	949	0.147	915	0.115	911	0.178	1,021
3	0.157	1,333	0.199	1,374	0.21	1,324	0.168	1,319	0.262	1,477
5	0.262	2,196	0.325	2,263	0.346	2,182	0.273	2,173	0.43	2,434
7.5	0.388	3256	0.483	3356	0.514	3235	0.409	3223	0.629	3609
10	0.514	4,292	0.64	4,424	0.682	4,265	0.545	4,248	0.839	4,758

	Dal	las	EI F	Paso	Hou	ston	San A	ntonio	Amarillo	
HP	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
15	0.745	6,316	0.934	6,512	0.997	6,277	0.797	6,253	1.227	7,002
20	0.997	8,422	1.248	8,682	1.332	8,370	1.059	8,337	1.636	9,336
25	1.238	10,435	1.542	10,757	1.647	10,370	1.322	10,329	2.035	11,568
30	1.479	12,426	1.846	12,810	1.962	12,349	1.573	12,301	2.423	13,775
40	1.951	16,443	2.434	16,951	2.591	16,341	2.077	16,277	3.199	18,228
50	2.434	20,553	3.042	21,189	3.241	20,426	2.591	20,346	3.997	22,785
60	2.906	24,505	3.63	25,262	3.871	24,353	3.095	24,257	4.773	27,166
75	3.609	30,435	4.511	31,375	4.804	30,246	3.839	30,127	5.927	33,740
100	4.815	40,579	6.011	41,834	6.409	40,328	5.13	40,170	7.899	44,986
				E	ducation -	1				
1	0.021	474	0.031	486	0.031	463	0.021	468	0.042	516
2	0.042	936	0.063	960	0.052	915	0.052	925	0.073	1,020
3	0.063	1,355	0.084	1,390	0.084	1,324	0.073	1,339	0.105	1,477
5	0.115	2,233	0.147	2,290	0.126	2,181	0.126	2,206	0.178	2,433
7.5	0.168	3311	0.21	3395	0.189	3234	0.178	3271	0.262	3607
10	0.22	4,365	0.283	4,476	0.252	4,263	0.241	4,312	0.346	4,755
15	0.325	6,424	0.409	6,587	0.378	6,274	0.357	6,347	0.514	6,998
20	0.43	8,565	0.545	8,782	0.504	8,365	0.472	8,462	0.682	9,331
25	0.535	10,612	0.671	10,881	0.619	10,365	0.587	10,485	0.850	11,561
30	0.629	12,637	0.808	12,958	0.734	12,343	0.692	12,486	1.018	13,768
40	0.839	16,722	1.07	17,147	0.976	16,333	0.923	16,522	1.343	18,218
50	1.049	20,903	1.332	21,433	1.217	20,416	1.154	20,652	1.678	22,772
60	1.248	24,922	1.584	25,554	1.458	24,341	1.374	24,623	1.993	27,151
75	1.553	30,952	1.972	31,738	1.804	30,231	1.71	30,581	2.476	33,721
100	2.067	41,270	2.633	42,317	2.413	40,308	2.276	40,775	3.304	44,961
				Education	n – College	e & Univers	ity		· · · ·	
1	0.063	535	0.084	551	0.094	533	0.073	529	0.105	593
2	0.136	1,057	0.168	1,089	0.178	1,054	0.136	1,044	0.21	1,171
3	0.189	1,530	0.241	1,576	0.252	1,525	0.199	1,511	0.304	1,695
5	0.315	2,521	0.388	2,597	0.42	2,513	0.336	2,490	0.504	2,793
7.5	0.472	3738	0.587	3850	0.629	3726	0.493	3692	0.755	4141
10	0.619	4,928	0.766	5,076	0.829	4,912	0.661	4,867	0.997	5 <i>,</i> 459
15	0.923	7,252	1.133	7,470	1.217	7,229	0.965	7,163	1.458	8,035
20	1.227	9,669	1.511	9,960	1.626	9,639	1.29	9,551	1.951	10,713
25	1.521	11,980	1.867	12,341	2.014	11,943	1.594	11,834	2.413	13,273
30	1.804	14,267	2.224	14,696	2.392	14,222	1.899	14,092	2.874	15,807
40	2.392	18,878	2.948	19,446	3.168	18,819	2.518	18,647	3.808	20,916
50	2.99	23,598	3.682	24,308	3.965	23,523	3.147	23,308	4.762	26,145
60	3.567	28,135	4.385	28,981	4.72	28,046	3.745	27,790	5.675	31,171
75	4.427	34,943	5.455	35,994	5.864	34,832	4.658	34,514	7.049	38,714
100	5.906	46,591	7.269	47,992	7.815	46,443	6.21	46,019	9.399	51,619
					Retail					
1	0.063	645	0.084	664	0.094	646	0.073	634	0.105	716
2	0.136	1,275	0.168	1,311	0.178	1,277	0.136	1,253	0.21	1,415
3	0.189	1,845	0.241	1,898	0.252	1,848	0.199	1,813	0.304	2,047
5	0.315	3,040	0.388	3,127	0.42	3,044	0.336	2,987	0.504	3,373
7.5	0.472	4507	0.587	4637	0.629	4514	0.493	4430	0.755	5002

	Dal	las	El F	Paso	Hou	ston	San A	ntonio	Am	arillo
HP	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
10	0.619	5,942	0.766	6,113	0.829	5,951	0.661	5,840	0.997	6,593
15	0.923	8,745	1.133	8,997	1.217	8,759	0.965	8,594	1.458	9,704
20	1.227	11,659	1.511	11,995	1.626	11,678	1.29	11,459	1.951	12,938
25	1.521	14,446	1.867	14,862	2.014	14,469	1.594	14,198	2.413	16,031
30	1.804	17,203	2.224	17,699	2.392	17,230	1.899	16,907	2.874	19,090
40	2.392	22,764	2.948	23,420	3.168	22,800	2.518	22,372	3.808	25,261
50	2.99	28,454	3.682	29,274	3.965	28,500	3.147	27,965	4.762	31,576
60	3.567	33,925	4.385	34,903	4.72	33,979	3.745	33,342	5.675	37,646
75	4.427	42,135	5.455	43,349	5.864	42,202	4.658	41,410	7.049	46,756
100	5.906	56,179	7.269	57,798	7.815	56,269	6.21	55,214	9.399	62,342
				Rest	aurant – F	ast Food				
1	0.063	801	0.084	824	0.094	799	0.073	789	0.105	882
2	0.136	1,582	0.168	1,627	0.178	1,579	0.136	1,559	0.21	1,742
3	0.189	2,289	0.241	2,355	0.252	2,285	0.199	2,256	0.304	2,522
5	0.315	3,771	0.388	3,880	0.42	3,764	0.336	3,716	0.504	4,154
7.5	0.472	5592	0.587	5753	0.629	5582	0.493	5511	0.755	6160
10	0.619	7,372	0.766	7,584	0.829	7,358	0.661	7,265	0.997	8,121
15	0.923	10,850	1.133	11,161	1.217	10,829	0.965	10,692	1.458	11,952
20	1.227	14,467	1.511	14,882	1.626	14,439	1.29	14,256	1.951	15,936
25	1.521	17,924	1.867	18,439	2.014	17,890	1.594	17,664	2.413	19,745
30	1.804	21,345	2.224	21,958	2.392	21,305	1.899	21,034	2.874	23,513
40	2.392	28,244	2.948	29,055	3.168	28,191	2.518	27,834	3.808	31,113
50	2.99	35,305	3.682	36,319	3.965	35,239	3.147	34,792	4.762	38,892
60	3.567	42,093	4.385	43,301	4.72	42,013	3.745	41,481	5.675	46,369
75	4.427	52,279	5.455	53,779	5.864	52,180	4.658	51,519	7.049	57,590
100	5.906	69,705	7.269	71,706	7.815	69,574	6.21	68,692	9.399	76,786
				Rest	aurant – S	Sit Down				
1	0.063	613	0.084	631	0.094	619	0.073	603	0.105	680
2	0.136	1,212	0.168	1,246	0.178	1,222	0.136	1,191	0.21	1,343
3	0.189	1,754	0.241	1,803	0.252	1,769	0.199	1,723	0.304	1,944
5	0.315	2,889	0.388	2,970	0.42	2,914	0.336	2,839	0.504	3,202
7.5	0.472	4284	0.587	4405	0.629	4321	0.493	4209	0.755	4748
10	0.619	5,647	0.766	5,806	0.829	5,696	0.661	5,549	0.997	6,259
15	0.923	8,311	1.133	8,545	1.217	8,383	0.965	8,167	1.458	9,212
20	1.227	11,082	1.511	11,394	1.626	11,178	1.29	10,889	1.951	12,283
25	1.521	13,731	1.867	14,117	2.014	13,850	1.594	13,492	2.413	15,218
30	1.804	16,351	2.224	16,811	2.392	16,493	1.899	16,067	2.874	18,123
40	2.392	21,636	2.948	22,245	3.168	21,824	2.518	21,260	3.808	23,981
50	2.99	27,045	3.682	27,806	3.965	27,280	3.147	26,575	4.762	29,976
60	3.567	32,245	4.385	33,152	4.72	32,524	3.745	31,684	5.675	35,739
75	4.427	40,048	5.455	41,175	5.864	40,395	4.658	39,351	7.049	44,387
100	5.906	53,397	7.269	54,899	7.815	53,860	6.21	52,468	9.399	59,183

				-		-				
HP		Dallas		El Paso		Houston	San	Antonio		Amarillo
	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
				Hos	pital & He	althCare				
1	0.084	1,633	0.105	1,698	0.105	1,599	0.084	1,585	0.136	1,844
2	0.157	3,226	0.199	3,356	0.21	3,159	0.168	3,131	0.273	3,644
3	0.231	4,669	0.294	4,857	0.304	4,572	0.241	4,531	0.399	5,275
5	0.378	7,692	0.483	8,001	0.504	7,533	0.399	7,465	0.650	8,689
7.5	0.556	11406	0.713	11864	0.745	11170	0.587	11069	0.976	12885
10	0.734	15,036	0.934	15,640	0.976	14,725	0.776	14,592	1.280	16,986
15	1.08	22,128	1.374	23,018	1.437	21,671	1.143	21,476	1.888	24,999
20	1.448	29,504	1.836	30,691	1.92	28,895	1.521	28,634	2.518	33,331
25	1.794	36,556	2.266	38,027	2.381	35,801	1.888	35,478	3.115	41,298
30	2.129	43,533	2.706	45,284	2.832	42,633	2.245	42,249	3.703	49,179
40	2.822	57,604	3.577	59,921	3.745	56,413	2.969	55,905	4.909	65,076
50	3.525	72,005	4.469	74,901	4.678	70,516	3.713	69,881	6.137	81,345
60	4.206	85,849	5.329	89,302	5.581	84,074	4.427	83,316	7.311	96,984
75	5.224	106,623	6.619	110,911	6.934	104,418	5.497	103,478	9.084	120,453
100	6.965	142,164	8.832	147,882	9.242	139,225	7.322	137,970	12.105	160,604
					Office - La	arge				
1	0.084	769	0.105	798	0.105	748	0.084	745	0.136	881
2	0.157	1,519	0.199	1,577	0.21	1,478	0.168	1,472	0.273	1,741
3	0	2,198	0.294	2,282	0.304	2,140	0.241	2,130	0.399	2,519
5	0.378	3,622	0.483	3,760	0.504	3,525	0.399	3,510	0.650	4,150
7.5	1	5,370	0.713	5575	0.745	5227	0.587	5204	0.976	6155
10	0.734	7,080	0.934	7,350	0.976	6,891	0.776	6,861	1.280	8,113
15	1	10,419	1.374	10,817	1.437	10,142	1.143	10,097	1.888	11,941
20	1.448	13,892	1.836	14,422	1.92	13,522	1.521	13,463	2.518	15,921
25	1.794	17,213	2.266	17,870	2.381	16,754	1.888	16,680	3.115	19,726
30	2.129	20,498	2.706	21,280	2.832	19,952	2.245	19,864	3.703	23,491
40	2.822	27,123	3.577	28,158	3.745	26,401	2.969	26,284	4.909	31,083
50	3.525	33,904	4.469	35,198	4.678	33,001	3.713	32,855	6.137	38,854
60	4.206	40,423	5.329	41,965	5.581	39,345	4.427	39,172	7.311	46,324
75	5.224	50,204	6.619	52,119	6.934	48,866	5.497	48,651	9.084	57,534
100	6.965	66,939	8.832	69,493	9.242	65,155	7.322	64,868	12.105	76,712
					Office - S	mall				
1	0.063	695	0.084	722	0.084	672	0.073	674	0.115	797
2	0.126	1,373	0.168	1,427	0.168	1,327	0.136	1,332	0.231	1,574
3	0.189	1,987	0.241	2,065	0.252	1,921	0.199	1,928	0.336	2,279
5	0.304	3,274	0.388	3,402	0.409	3,165	0.325	3,176	0.545	3,754
7.5	0.451	4855	0.587	5045	0.608	4693	0.483	4709	0.818	5567
10	0.598	6,400	0.766	6,650	0.797	6,187	0.64	6,208	1.070	7,339
15	1	9,419	1.133	9,788	1.175	9,105	0.944	9,137	1.573	10,801
20	1.175	12,559	1.511	13,050	1.563	12,141	1.259	12,183	2.108	14,401
25	1.458	15,560	1.867	16,169	1.941	15,042	1.553	15,094	2.601	17,843
30	1.741	18,530	2.224	19,255	2.308	17,913	1.846	17,975	3.105	21,248
40	2.308	24,519	2.948	25,479	3.053	23,703	2.444	23,785	4.112	28,116
50	2.874	30,649	3.682	31,849	3.818	29,629	3.063	29,731	5.130	35,145

Table 2-40: Deemed Energy and Demand Savings Values for Inlet Damper Part-Load Fan Controlby Climate Region

HP		Dallas	-	El Paso		Houston	San	Antonio		Amarillo
	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
60	3.43	36,541	4.385	37,972	4.553	35,325	3.65	35,447	6.126	41,902
75	4.259	45,384	5.444	47,161	5.654	43,873	4.532	44,025	7.605	52,042
100	5.686	60,512	7.269	62,881	7.532	58,498	6.042	58,700	10.133	69,389
				E	ducation -	- K-12				
1	0.031	713	0.031	737	0.031	678	0.031	690	0.052	805
2	0.052	1,408	0.073	1,456	0.063	1,340	0.063	1,364	0.094	1,591
3	0.084	2,038	0.105	2,108	0.094	1,939	0.084	1,974	0.147	2,303
5	0.126	3,358	0.168	3,473	0.157	3,195	0.147	3,253	0.241	3,794
7.5	0.189	4979	0.252	5150	0.231	4737	0.21	4823	0.346	5626
10	0.252	6,564	0.336	6,789	0.294	6,245	0.283	6,358	0.462	7,416
15	0.378	9,660	0.493	9,991	0.441	9,191	0.42	9,358	0.682	10,914
20	0.504	12,881	0.661	13,321	0.587	12,255	0.556	12,477	0.913	14,553
25	0.619	15,959	0.818	16,505	0.724	15,184	0.682	15,459	1.122	18,031
30	0.734	19,005	0.976	19,655	0.86	18,082	0.818	18,409	1.343	21,472
40	0.976	25,148	1.29	26,008	1.143	23,927	1.08	24,360	1.773	28,412
50	1.217	31,435	1.615	32,510	1.427	29,908	1.353	30,450	2.213	35,515
60	1.458	37,478	1.92	38,761	1.699	35,658	1.615	36,304	2.643	42,343
75	1.804	46,547	2.381	48,140	2.108	44,287	2.004	45,089	3.283	52,590
100	2.413	62,063	3.178	64,187	2.811	59,050	2.675	60,119	4.374	70,119
				Education	n – College	e & Univers	ity			
1	0.084	797	0.105	828	0.105	774	0.084	772	0.136	914
2	0.157	1,576	0.199	1,635	0.21	1,529	0.168	1,524	0.273	1,806
3	0.231	2,280	0.294	2,367	0.304	2,213	0.241	2,206	0.399	2,614
5	0.378	3,757	0.483	3,899	0.504	3,646	0.399	3,635	0.650	4,306
7.5	0.556	5571	0.713	5782	0.745	5407	0.587	5390	0.976	6386
10	0.734	7,344	0.934	7,623	0.976	7,128	0.776	7,105	1.280	8,418
15	1.08	10,808	1.374	11,218	1.437	10,490	1.143	10,457	1.888	12,389
20	1.448	14,410	1.836	14,958	1.92	13,987	1.521	13,943	2.518	16,518
25	1.794	17,855	2.266	18,533	2.381	17,330	1.888	17,275	3.115	20,467
30	2.129	21,262	2.706	22,070	2.832	20,637	2.245	20,572	3.703	24,372
40	2.822	28,134	3.577	29,204	3.745	27,308	2.969	27,222	4.909	32,250
50	3.525	35,168	4.469	36,504	4.678	34,135	3.713	34,027	6.137	40,313
60	4.206	41,929	5.329	43,523	5.581	40,698	4.427	40,569	7.311	48,063
75	5.224	52,076	6.619	54,055	6.934	50,546	5.497	50,386	9.084	59,694
100	6.965	69,434	8.832	72,073	9.242	67,394	7.322	67,181	12.105	79,592
					Retai					
1	0.084	961	0.105	995	0.105	939	0.084	923	0.136	1104
2	0.157	1,898	0.199	1,966	0.21	1,856	0.168	1,824	0.273	2,181
3	0.231	2,747	0.294	2,846	0.304	2,686	0.241	2,641	0.399	3,156
5	0.378	4,525	0.483	4,689	0.504	4,425	0.399	4,350	0.650	5,200
7.5	0.556	6711	0.713	6953	0.745	6562	0.587	6450	0.976	7711
10	0.734	8,846	0.934	9,166	0.976	8,651	0.776	8,503	1.280	10,165
15	1.08	13,019	1.374	13,489	1.437	12,732	1.143	12,515	1.888	14,959
20	1.448	17,359	1.836	17,986	1.92	16,975	1.521	16,686	2.518	19,946
25	1.794	21,508	2.266	22,284	2.381	21,033	1.888	20,674	3.115	24,713
30	2.129	25,613	2.706	26,537	2.832	25,047	2.245	24,620	3.703	29,429
40	2.822	33,892	3.577	35,115	3.745	33,142	2.969	32,578	4.909	38,942

HP		Dallas		El Paso		Houston	San	Antonio		Amarillo
	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
50	3.525	42,365	4.469	43,893	4.678	41,428	3.713	40,722	6.137	48,677
60	4.206	50,510	5.329	52,332	5.581	49,393	4.427	48,551	7.311	58,036
75	5.224	62,733	6.619	64,996	6.934	61,345	5.497	60,300	9.084	72,080
100	6.965	83,643	8.832	86,661	9.242	81,794	7.322	80,400	12.105	96,107
					aurant – I	ast Food				
1	0.084	1198	0.105	1243	0.105	1169	0.084	1158	0.136	1368
2	0.157	2,368	0.199	2,456	0.21	2,310	0.168	2,287	0.273	2,703
3	0.231	3,427	0.294	3,555	0.304	3,344	0.241	3,310	0.399	3,913
5	0.378	5,646	0.483	5,856	0.504	5,508	0.399	5,454	0.650	6,446
7.5	0.556	8372	0.713	8684	0.745	8168	0.587	8087	0.976	9558
10	0.734	11,037	0.934	11,447	0.976	10,768	0.776	10,661	1.280	12,600
15	1.08	16,243	1.374	16,847	1.437	15,847	1.143	15,690	1.888	18,544
20	1.448	21,657	1.836	22,463	1.92	21,130	1.521	20,920	2.518	24,725
25	1.794	26,834	2.266	27,832	2.381	26,180	1.888	25,920	3.115	30,635
30	2.129	31,955	2.706	33,143	2.832	31,176	2.245	30,866	3.703	36,481
40	2.822	42,284	3.577	43,856	3.745	41,253	2.969	40,843	4.909	48,273
50	3.525	52,854	4.469	54,820	4.678	51,566	3.713	51,054	6.137	60,342
60	4.206	63,016	5.329	65,360	5.581	61,480	4.427	60,870	7.311	71,943
75	5.224	78,265	6.619	81,176	6.934	76,358	5.497	75,600	9.084	89,352
100	6.965	104,354	8.832	108,235	9.242	101,810	7.322	100,799	12.105	119,136
				Rest	aurant – S	Sit Down				
1	0.084	914	0.105	947	0.105	903	0.084	879	0.136	1050
2	0.157	1,806	0.199	1,872	0.21	1,783	0.168	1,737	0.273	2,074
3	0.231	2,615	0.294	2,709	0.304	2,581	0.241	2,514	0.399	3,002
5	0.378	4,307	0.483	4,463	0.504	4,252	0.399	4,142	0.650	4,945
7.5	0.556	6387	0.713	6618	0.745	6306	0.587	6141	0.976	7333
10	0.734	8,420	0.934	8,725	0.976	8,313	0.776	8,096	1.280	9,666
15	1.08	12,391	1.374	12,841	1.437	12,234	1.143	11,915	1.888	14,226
20	1.448	16,522	1.836	17,121	1.92	16,312	1.521	15,887	2.518	18,968
25	1.794	20,471	2.266	21,213	2.381	20,210	1.888	19,684	3.115	23,502
30	2.129	24,377	2.706	25,261	2.832	24,067	2.245	23,440	3.703	27,987
40	2.822	32,257	3.577	33,426	3.745	31,847	2.969	31,017	4.909	37,033
50	3.525	40,321	4.469	41,783	4.678	39,808	3.713	38,771	6.137	46,292
60	4.206	48,073	5.329	49,816	5.581	47,462	4.427	46,225	7.311	55,192
75	5.224	59,706	6.619	61,871	6.934	58,947	5.497	57,411	9.084	68,547
100	6.965	79,609	8.832	82,494	9.242	78,596	7.322	76,549	12.105	91,396

	Dal	las	El P	Paso	Hou	iston	San A	ntonio	Amarillo	
HP -	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
	·			Hos	pital & He	althCare				
1	0.010	337	0.021	353	0.021	323	0.01	321	0.021	391
2	0.031	665	0.031	698	0.031	639	0.031	635	0.052	773
3	0.042	963	0.052	1,010	0.052	925	0.042	919	0.073	1,119
5	0.063	1,586	0.084	1,664	0.084	1,523	0.073	1,514	0.115	1,844
7.5	0.105	2352	0.126	2468	0.126	2259	0.105	2245	0.178	2734
10	0.136	3,100	0.168	3,254	0.168	2,978	0.136	2,959	0.231	3,604
15	0.199	4,563	0.241	4,789	0.241	4,383	0.199	4,355	0.346	5,304
20	0.262	6,084	0.325	6,385	0.325	5,843	0.273	5,807	0.451	7,073
25	0.325	7,538	0.399	7,911	0.399	7,240	0.336	7,195	0.566	8,763
30	0.388	8,976	0.483	9,420	0.472	8,622	0.399	8,568	0.671	10,435
40	0.504	11,878	0.629	12,465	0.629	11,409	0.524	11,338	0.892	13,808
50	0.629	14,847	0.787	15,582	0.776	14,261	0.661	14,172	1.112	17,261
60	0.755	17,702	0.944	18,577	0.934	17,002	0.787	16,897	1.322	20,579
75	0.944	21,985	1.164	23,073	1.154	21,117	0.976	20,986	1.647	25,559
100	1.248	29,314	1.563	30,764	1.542	28,156	1.301	27,981	2.192	34,079
					Office - La					
1	0.010	157	0.021	164	0.021	149	0.01	149	0.021	185
2	0.031	311	0.031	324	0.031	294	0.031	295	0.052	365
3	0.042	449	0.052	469	0.052	426	0.042	427	0.073	528
5	0.063	741	0.084	773	0.084	702	0.073	704	0.115	870
7.5	0.105	1,098	0.126	1146	0.126	1040	0.105	1043	0.178	1290
10	0.136	1,448	0.168	1,511	0.168	1,371	0.136	1,375	0.231	1,700
15	0.199	2,130	0.241	2,223	0.241	2,018	0.199	2,024	0.346	2,502
20	0.262	2,841	0.325	2,964	0.325	2,691	0.273	2,699	0.451	3,336
25	0.325	3,519	0.399	3,673	0.399	3,334	0.336	3,344	0.566	4,134
30	0.388	4,191	0.483	4,374	0.472	3,970	0.399	3,982	0.671	4,923
40	0.504	5,546	0.629	, 5,788	0.629	5,254	0.524	5,269	0.892	6,514
50	0.629	6,932	0.787	7,235	0.776	6,567	0.661	6,586	1.112	8,142
60	0.755	8,265	0.944	8,626	0.934	7,830	0.787	7,853	1.322	9,708
75	0.944	10,265	1.164	10,713	1.154	9,724	0.976	9,753	1.647	12,057
100	1.248	13,687	1.563	14,284	1.542	12,966	1.301	13,004	2.192	16,076
					Office - Si					
1	0.010	142	0.01	149	0.01	134	0.01	135	0.021	167
2	0.021	281	0.031	293	0.031	264	0.021	267	0.042	330
3	0.031	407	0.042	425	0.042	382	0.031	387	0.063	478
5	0.052	670	0.073	700	0.073	630	0.063	637	0.094	787
7.5	0.084	993	0.105	1037	0.105	934	0.084	944	0.147	1167
10	0.105	1,309	0.136	1,368	0.136	1,231	0.115	1,245	0.199	1,539
15	0.157	1,927	0.199	2,013	0.199	1,811	0.168	1,832	0.283	2,264
20	0.220	2,569	0.262	2,684	0.262	2,415	0.22	2,443	0.378	3,019
25	0.262	3,183	0.336	3,325	0.325	2,992	0.283	3,027	0.472	3,741
30	0.315	3,791	0.399	3,960	0.388	3,563	0.336	3,605	0.566	4,455
40	0.420	5,016	0.535	5,240	0.500	4,715	0.441	4,770	0.745	5,895
50	0.524	6,270	0.524	6,550	0.514	5,893	0.545	5,963	0.934	7,368

Table 2-41: Deemed Energy and Demand Savings Values for Inlet Guide Vane Part-Load Fan
Control by Climate Region

	Dal	las	El F	Paso	Hou	iston	San A	ntonio	Ama	arillo
HP	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
60	0.629	7,475	0.776	7,809	0.766	7,027	0.65	7,109	1.112	8,785
75	0.776	9,284	0.965	9,699	0.955	8,727	0.818	8,829	1.374	10,911
100	1.038	12,379	1.29	12,932	1.269	11,636	1.08	, 11,772	1.836	14,548
		,		1	ducation -	1		,		,
1	0.000	146	0.010	152	0.01	136	0.000	139	0.010	170
2	0.010	289	0.010	301	0.010	268	0.010	275	0.021	336
3	0.010	418	0.021	436	0.010	388	0.010	398	0.031	487
5	0.021	689	0.031	718	0.021	640	0.021	655	0.042	801
7.5	0.031	1022	0.042	1064	0.042	949	0.031	971	0.063	1188
10	0.042	1,348	0.052	1,403	0.052	1,251	0.052	1,281	0.084	1,567
15	0.063	1,983	0.084	2,065	0.073	1,841	0.073	1,885	0.126	2,306
20	0.084	2,645	0.115	2,753	0.094	2,454	0.094	2,513	0.168	3,074
25	0.105	3,277	0.136	3,411	0.115	3,041	0.115	3,114	0.210	3,809
30	0.126	3,902	0.168	4,061	0.147	3,621	0.136	3,708	0.252	4,536
40	0.168	5,163	0.22	5,374	0.189	4,792	0.189	4,906	0.325	6,003
50	0.210	6,454	0.273	6,718	0.241	5,990	0.231	6,133	0.409	7,503
60	0.252	7,695	0.325	8,009	0.283	7,142	0.273	7,312	0.483	8,946
75	0.315	9,557	0.409	9,948	0.357	8,870	0.336	9,082	0.608	11,110
100	0.420	12,742	0.545	13,263	0.472	11,826	0.451	12,109	0.808	14,814
		,		1		e & Univers		,		7 -
1	0.010	163	0.021	170	0.021	154	0.01	155	0.021	192
2	0.031	322	0.031	336	0.031	304	0.031	305	0.052	378
3	0.042	466	0.052	486	0.052	440	0.042	442	0.073	548
5	0.063	768	0.084	801	0.084	725	0.073	728	0.115	902
7.5	0.105	1139	0.126	1188	0.126	1075	0.105	1080	0.178	1338
10	0.136	1,501	0.168	1,566	0.168	1,418	0.136	1,423	0.231	1,764
15	0.199	2,209	0.241	2,305	0.241	2,086	0.199	2,095	0.346	2,596
20	0.262	2,946	0.325	3,073	0.325	2,782	0.273	2,793	0.451	3,462
25	0.325	3,650	0.399	3,808	0.399	3,447	0.336	3,461	0.566	4,289
30	0.388	4,346	0.483	4,534	0.472	4,105	0.399	4,121	0.671	5,108
40	0.504	5,751	0.629	6,000	0.629	5,431	0.524	5,454	0.892	6,759
50	0.629	7,189	0.787	7,500	0.776	6,789	0.661	6,817	1.112	8,448
60	0.755	8,571	0.944	8,942	0.934	8,094	0.787	8,128	1.322	10,072
75	0.944	10,645	1.164	11,105	1.154	10,053	0.976	10,094	1.647	12,510
100	1.248	14,193	1.563	14,807	1.542	13,404	1.301	13,459	2.192	16,680
					Retail					
1	0.010	196	0.021	204	0.021	187	0.01	185	0.021	231
2	0.031	388	0.031	403	0.031	370	0.031	365	0.052	457
3	0.042	561	0.052	584	0.052	535	0.042	528	0.073	661
5	0.063	924	0.084	962	0.084	882	0.073	870	0.115	1,090
7.5	0.105	1371	0.126	1427	0.126	1307	0.105	1290	0.178	1616
10	0.136	1,807	0.168	1,881	0.168	1,723	0.136	1,700	0.231	2,130
15	0.199	2,659	0.241	2,768	0.241	2,536	0.199	2,502	0.346	3,135
20	0.262	3,546	0.325	3,690	0.325	3,382	0.273	3,336	0.451	4,179
25	0.325	4,393	0.399	4,572	0.399	4,190	0.336	4,134	0.566	5,178
30	0.388	5,232	0.483	5,445	0.472	4,990	0.399	4,923	0.671	6,166
40	0.504	6,923	0.629	7,205	0.629	6,602	0.524	6,514	0.892	8,160

HP -	Dal	las	El F	Paso	Hou	iston	San A	ntonio	Am	arillo
HP	kW	kWh	kW	kWh	kW	kWh	kW	kWh	kW	kWh
50	0.629	8,653	0.787	9,006	0.776	8,253	0.661	8,142	1.112	10,200
60	0.755	10,317	0.944	10,738	0.934	9,840	0.787	9,708	1.322	12,161
75	0.944	12,814	1.164	13,336	1.154	12,221	0.976	12,057	1.647	15,103
100	1.248	17,085	1.563	17,782	1.542	16,294	1.301	16,076	2.192	20,138
				Rest	aurant – F	ast Food				
1	0.010	246	0.021	256	0.021	234	0.010	233	0.021	288
2	0.031	485	0.031	506	0.031	463	0.031	460	0.052	569
3	0.042	702	0.052	733	0.052	669	0.042	666	0.073	824
5	0.063	1,157	0.084	1,207	0.084	1,103	0.073	1,096	0.115	1,357
7.5	0.105	1716	0.126	1790	0.126	1635	0.105	1626	0.178	2012
10	0.136	2,262	0.168	2,359	0.168	2,156	0.136	2,143	0.231	2,653
15	0.199	3,329	0.241	3,472	0.241	3,173	0.199	3,154	0.346	3,904
20	0.262	4,438	0.325	4,630	0.325	4,230	0.273	4,206	0.451	5,206
25	0.325	5,499	0.399	5,737	0.399	5,242	0.336	5,211	0.566	6,450
30	0.388	6,549	0.483	6,831	0.472	6,242	0.399	6,205	0.671	7,681
40	0.504	8,665	0.629	9,040	0.629	8,259	0.524	8,211	0.892	10,164
50	0.629	10,832	0.787	11,299	0.776	10,324	0.661	10,264	1.112	12,704
60	0.755	12,914	0.944	13,472	0.934	12,309	0.787	12,237	1.322	15,147
75	0.944	16,039	1.164	16,732	1.154	15,288	0.976	15,199	1.647	18,812
100	1.248	21,386	1.563	22,309	1.542	20,384	1.301	20,265	2.192	25,083
				Rest	aurant – S	Sit Down				
1	0.010	187	0.021	195	0.021	180	0.01	176	0.021	220
2	0.031	369	0.031	385	0.031	356	0.031	348	0.052	435
3	0.042	535	0.052	557	0.052	516	0.042	504	0.073	630
5	0.063	881	0.084	918	0.084	850	0.073	830	0.115	1,038
7.5	0.105	1306	0.126	1361	0.126	1260	0.105	1230	0.178	1539
10	0.136	1,722	0.168	1,794	0.168	1,661	0.136	1,622	0.231	2,029
15	0.199	2,534	0.241	2,640	0.241	2,445	0.199	2,386	0.346	2,985
20	0.262	3,378	0.325	3,520	0.325	3,260	0.273	3,182	0.451	3,981
25	0.325	4,186	0.399	4,361	0.399	4,039	0.336	3,943	0.566	4,932
30	0.388	4,985	0.483	5,193	0.472	4,809	0.399	4,695	0.671	5,873
40	0.504	6,596	0.629	6,872	0.629	6,364	0.524	6,212	0.892	7,772
50	0.629	8,245	0.787	8,590	0.776	7,955	0.661	7,766	1.112	9,714
60	0.755	9,830	0.944	10,241	0.934	9,484	0.787	9,259	1.322	11,582
75	0.944	12,209	1.164	12,720	1.154	11,780	0.976	11,499	1.647	14,385
100	1.248	16,278	1.563	16,960	1.542	15,706	1.301	15,332	2.192	19,180

Claimed Peak Demand Savings

The peak demand for this measure is based on the average kW savings available throughout the utility system peak period. This peak period is defined as 1pm to 7pm during the months of June through September, excluding weekends and Federal holidays. The peak demand savings are calculated by taking the energy savings and dividing them by the number of hours in the utility-defined peak period. Additional demand savings are added based on estimates of savings from the interactive cooling effects.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for this VFD measure is 15 years per the PUCT-approved Texas EUL filing (Docket No. 36779).

Program Tracking Data & Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

Building Type

Climate Zone

Fan Size

Part-load Control Type

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 36779 – Provides EUL for VFD equipment.

PUCT Docket 40668 – Provides details on deemed savings calculations for VFDs.

Relevant Standards and Reference Sources

ASHRAE Standard 90.1-2004

Document Revision History

Table 2-42: Nonresidential HVAC-VFD History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.3 NONRESIDENTIAL: BUILDING ENVELOPE

2.3.1 ENERGY STAR[®] Roofs Measure Overview

TRM Measure ID: NR-BE-CR
Market Sector: Commercial
Measure Category: Building Envelope
Applicable Building Types: Specific Building Types defined by each utility⁴⁵
Fuels Affected: Electricity
Decision/Action Type: Retrofit (RET)
Program Delivery Type: Prescriptive
Deemed Savings Type: Deemed Savings Calculation
Savings Methodology: Calculators, Worksheets

Measure Description

This section presents the deemed savings methodology for the installation of an ENERGY STAR[®] certified roof. The installation of an ENERGY STAR[®] roof decreases the roofing heat transfer coefficient and reduces the solar heat transmitted to the building space. During months when cooling is required in the building, this measure decreases the cooling energy use.

Eligibility Criteria

The simplified M&V guidelines are applicable for roofs with a slope of 2.5 or less only. Reflectivity must be at least 65% at three years, have at least a 10-year life, and be listed on the ENERGY STAR[®] list of qualified products.⁴⁶

Baseline Condition

A baseline is not specified in the program manuals for any of the utilities. The only utility to specify baseline requirements is EPE, in PUCT Docket No. 41070, which states that the baseline is considered to be a black ethylene propylene diene monomer (EPDM) roofing membrane with a solar reflectance of 6.2%. The building is assumed to have a ceiling with a total R-value (including construction materials) of 18. Electric AC was assumed to have an EER of 8.5, and electric heating, a COP of 1.

⁴⁵ Building Types are specified in the Oncor and AEP calculators. These building types differ for both utilities. It is believed that the cooling EFLH changes based on the building type, but it is unclear what EFLH is being used for each.

⁴⁶ ENERGY STAR[®] Certified Roofs. <u>http://www.energystar.gov/productfinder/product/certified-roof-products/</u>. Accessed 09/11/2013.

High-Efficiency Condition

A high efficiency condition is not specified in the program manuals for any of the utilities. The only utility to specify high efficiency requirements is EPE, in PUCT Docket No. 41070 in which it was determined that to qualify for a cool roof at least 75% of the roof surface over conditioned space must be replaced by a material with a solar reflectance of at least 70%. The roof must also receive significant direct sunlight.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Across the Texas utilities, there are several ways of calculating energy and demand savings for ENERGY STAR[®] roofs. Oncor and AEP use the algorithms below in their calculators to calculate their savings.

Demand Savings [kW]

$$=\frac{A}{COP}\times\left[\left(\frac{1}{R_{exist}+\left(\frac{1}{h_{in,air}}\right)-R_{prop}+\left(\frac{1}{h_{in,air}}\right)}\right)\left(t_{o}-\frac{\varepsilon\Delta R}{h_{o}}-t_{in}\right)+\frac{(1-\rho_{exist})E_{tP}}{R_{exist}+\left(\frac{1}{h_{in,air}}\right)h_{o}}-\frac{(1-\rho_{prop})E_{tP}}{R_{prop}+\left(\frac{1}{h_{in,air}}\right)h_{o}}\right]$$

Equation 33

$$Energy Savings [kWh] = \frac{A}{COP} \\ \times \left[\left(\frac{1}{R_{exist} + \left(\frac{1}{h_{in,air}} \right) - R_{prop} + \left(\frac{1}{h_{in,air}} \right)} \right) \left(\sum_{i=1}^{n} t_{o,i} - n \times \frac{\varepsilon \Delta R}{h_o} - n \times t_{in} \right) + \frac{(1 - \rho_{exist}) \sum_{i=1}^{n} E_{t,i}}{R_{exist} + \left(\frac{1}{h_{in,air}} \right) h_o} \\ - \frac{(1 - \rho_{prop}) \sum_{i=1}^{n} E_{t,i}}{R_{prop} + \left(\frac{1}{h_{in,air}} \right) h_o} \right]$$

Equation 34

Where:

A	=	Roof Area [ft²]
h _o	=	coefficient of heat transfer by long-wave radiation and convection at outer surface [Btu/hr-ºF-ft ²], assumed to be 3.
СОР	=	Coefficient of Performance
R	=	The total thermal resistance value (R-value) of the roof [hr-ºF- ft²/Btu], See Table 2-43.

h _{in,air}	=	The heat transfer coefficient for indoor air [Btu/hr-ºF-ft ²], assumed to be 1.68.
ρ	=	Reflectance of surface for solar radiation
$E_{t,P}$	=	Total peak solar radiation incident on surface during a cooling period [Btu/hr-ft²]. See table 50.
$\Sigma E_{t,t}$	=	The sum of the hourly solar radiation incident during a cooling period [Btu/hr-ft ²]. See Table 2-44.
n	=	The number of total cooling hours when solar radiation exist = 636^{47}
3	=	Emittance of surface for solar radiation
ΔR	=	Difference between long-wave radiation incident on surface from sky and radiation emitted by blackbody at outdoor air temperature [Btu/hr-ft²], assumed to be 20.
to	=	Outdoor air temperature
t _{in}	=	Indoor air temperature, assumed to be 75°F

CenterPoint Electric and Xcel Energy also use calculator-based method; however, their method is slightly different, and uses the following algorithms. These algorithms are pulled from their calculator. Note that each utility should use only its approved calculations for this measure.

$$\Delta Q\left[\frac{Btu}{hr}\right] = \Delta U \times A \times \Delta T = \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \times A \times \Delta T$$

Equation 35

$$\Delta T = T_{sol-air} - T_{space} = T_{oa} + \frac{\alpha}{h_o} \times \frac{I_{DT}}{24} - \frac{\varepsilon \times \Delta R}{h_o} - T_{space}$$

Equation 36

$$\Delta kW = \Delta Q \times 1.0 \times \frac{1}{12,000}$$

Equation 37

$$\Delta kWh = \Delta kW \times EFLH$$

Equation 38

⁴⁷ Peak hours are set as the months of May to September, 1pm to 7pm weekdays.

Where:

A	=	Roof Area [ft²]
ΔU	=	Difference in pre- and post-retrofit overall coefficient of heat transfer
ΔQ	=	Heat transfer [Btu/hr]
ΔT	=	Temperature difference [°F}
R_1	=	Thermal resistance pre-retrofit
R_2	=	Thermal resistance post-retrofit
α	=	Absorptance of surface for solar radiation ⁴⁸
h _o	=	Coefficient of heat transfer by long-wave radiation and convection at outer surface ⁴⁸
I _{DT}	=	Hourly solar radiation incident on surface ⁴⁸
ε	=	Hemispherical emittance of the surface, assumed to be 1.0
T _{oa}	=	Outdoor air temperature [°F}
T _{sol}	=	Sol-air temperature [ºF] ⁴⁹
T _{space}	=	Indoor temperature [°F}
ΔR	=	Difference between long-wave radiation incident on surface from sky and surroundings and radiation emitted by blackbody at outdoor air temperature
1.0	=	Assumed cooling efficiency [kW/ton]
1/12,000	=	Conversion from Btu to Tons/hr
EFLH	=	Effective full load hours [hours], assumed to be 2,000 hours

⁴⁸ $I_{DT} = \frac{\alpha}{h_o} \times 1.15$. Per the C&I Standard Offer Program Calculator, ASHRAE recommended values for light colored surfaces = 0.15, for medium-colored surfaces = 0.23, and for dark-colored surfaces = 0.30. These values have been approximated using SHGF for a horizontal surface at 32° north latitude as described in 1993 ASHRAE Fundamentals, Chapter 26. Values from 1993 ASHRAE Fundamentals, Chapter 27, Tables 14.

⁴⁹ Defined by ASHRAE as the temperature that would yield the same amount of heat transfer as the combination of incident solar radiation, radiant energy exchange with the surroundings, and convective heat exchange with the outdoor air.

Finally, El Paso Electric uses the methodology found in Docket No. 41070. This docket outlines a deemed method for calculating savings. Their algorithm and deemed input variables used to calculate savings are shown below:

Cooling Energy Savings
$$\left[\frac{kWh}{ft^2}\right] = \frac{1}{EER} \times \frac{(\rho_{new} - \rho_{old}) \times E_{t,cooling}}{(R_{ins} + R_{cons} + R_{airfilm}) \times h_o} \times 0.001$$

Equation 39

Heating Energy Penalty
$$\left[\frac{kWh}{ft^2}\right]$$

= $\frac{1}{COP} \times \frac{(\rho_{old} - \rho_{new}) \times E_{t,heating}}{(R_{ins} + R_{cons} + R_{airfilm}) \times h_o} \times \frac{1}{3412}$

Equation 40

Total Energy Savings⁵⁰ = Cooling Energy Savings – Heating Energy Penalty Equation 41

Peak Demand Savings
$$\left[\frac{kW}{ft^2}\right] = \frac{1}{EER} \times \frac{(\rho_{new} - \rho_{old}) \times l_t}{(R_{ins} + R_{cons} + R_{airfilm}) \times h_o} \times 0.001$$

Equation 42

Where:

EER	=	Energy efficiency ratio of the buildings air conditioner [Btu/W-hr]
$E_{t,cooling}$	=	Total solar radiation incident on the surface throughout the time when a building is in cooling mode [Btu/ft ²]
$ ho_{\mathit{new}}$	=	Reflectance of the new roof membrane
$ ho_{ m old}$	=	Reflectance of the original roof membrane
R _{ins}	=	<i>R-value of the roof insulation [h-ft²-ºF/Btu]</i>
R _{cons}	=	<i>R-value of the roof construction [h-ft²-°F/Btu]</i>
R _{airfilm}	=	R-value of the air film [h-ft²-⁰F/Btu]
h _o	=	Coefficient of heat transfer by long-wave radiation and convection at outer surface
0.001	=	Conversion kWh per Watt-Hr
СОР	=	Coefficient of performance of building's electric heating system
E _{t,heating}	=	Total solar radiation incident on the surface throughout the time when a building is in heating mode [Btu/ft²]

⁵⁰ For buildings with electric resistance heating.

- 3412 = Conversion Btu per kWh
- I_t = Total solar radiation incident on the surface during the summer peak hour [Btu/ft²-hr]

Stipulated R-values and solar data used for the calculations are presented next:

Roofing Material	R-Value	Plenum	R-Value
Asbestos – cement shingles	0.21	Yes	0.61
Asphalt Roll Roofing	0.15	No	0.00
Asphalt Shingles	0.44	Membrane	R-Value
Built-up Roofing (0.375")	0.33	Permeable Felt	0.06
Slate (0.5")	0.05	Seal, 2 layers of mopped 15 lb felt	0.12
Wood Shingles	0.94	Sel, plastic film	0.00
Construction Material	R-Value	Insulation Material	R-Value (per inch)
Concrete 4"	0.08	None	0.00
Concrete 8"	1.11	Cellulose	3.70
Concrete 12"	1.23	Fiberglass	3.20
Brick 4"	0.80	Polystyrene	4.00
Wood Frame	0.10	Polyurethane	6.25
Metal Frame	0.00	Polyisocyanurate	7.00
Ceiling Material	R-Value		
Acoustic Tile	0.06		
Drywall Finish	0.45		
Plaster Finish	0.45		

Table 2-43: R-Values of Different Material [hr-ft²-ºF/Btu]

Table 2-44: TMY2 Solar Data

Climate Zone	Peak Total Solar Radiation Incident [Btu/hr-ft ²]	Total Solar Radiation Incident [Btu/ft ²]
Amarillo, TX	329.32	124,313.70
Brownsville, TX	325.52	113021.55
Dallas/Fort Worth, TX	335.34	117,686.13
Houston, TX	324.88	101,733.63
Austin, TX	342.31	116,510.73

Variable	Assumed Value
EER	8.5 ⁵²
COP	1.0 ⁵³
ρ _{new}	0.7 ⁵⁴
ρ _{old}	0.062 ⁵⁵
E _{t,cooling}	469,198.74 ⁵⁶
E _{t,heating}	185,347.02 ⁵⁶
I _t	217.46 ⁵⁷
R _{ins}	16 ⁵⁸
R _{cons}	2 ⁵⁹
R _{airfilm}	0.92 ⁶⁰
h _o	3 ⁶¹

Table 2-45: Deemed Values used in Algorithm for El Paso Electric⁵¹

Deemed Energy and Demand Savings Tables

The resulting deemed energy and demand savings values are presented in Table 2-46. Note that cool roofs have a negative heating impact, as reflected in the lower deemed savings value for Electric Resistance Heat versus Gas Heat.

Table 2-46: 0	Cool Roof Deemed Savings for El Paso Electric
---------------	---

Region	Electric A/C and Gas Heat [kWh/ft ²]	Electric A/C and Electric Resistance Heat [kWh/ft ²]	Summer Peak (Electric A/C) [kW/ft ²]	Winter Peak (Electric Resistance Heat) [kW/ft ²]
West	0.620463	0.09891	0.000291	0.00

⁵¹ All values and their sources were found in Docket No. 41070.

⁵² Federal minimum for split and packaged systems, 11.25-20 tons from January 1st, 1994 through December 31st, 2009.

⁵³ Value for electric resistance heat.

⁵⁴ Minimum required by EPE Cool Roof Program.

 ⁵⁵ Reflectance of ethylene propylene diene monomer (EPDM) rubber. Sourced from <u>http://www.fsec.ucf.edu/en/publications/html/FSEC-CR-670-00</u>. Accessed 09/12/2013.
 ⁵⁶ Total global horizontal irradiance when temperature is over 65°F (typical building's thermal balance)

⁵⁶ Total global horizontal irradiance when temperature is over 65°F (typical building's thermal balance point) per El Paso TMY3 file.

⁵⁷ Total global horizontal irradiance during summer peak hour per El Paso TMY3 file.

⁵⁸ IECC 2000 Table 802.2(17).

⁵⁹ Typical value.

⁶⁰ ASHRAE Fundamentals 2006 27.2.

⁶¹ ASHRAE Fundamentals 2006 18.22.

Claimed Peak Demand Savings

The peak demand savings appears to be a single, maximum value, and it is only calculated for the summer.

Measure Life and Lifetime Savings

Estimated Useful Life is 15 years for cool roofs, as discussed in PUCT Docket Nos. 36779 and 41070. The original source is the DEER Final Report from December 2008.

Additional Calculators and Tools

- Oncor Calculator: The calculator, created by Nexant, implements the savings algorithms listed above to calculate the total energy and peak demand savings. This calculator can be found on the Oncor website: https://www.oncoreepm.com/commprogram.aspx, titled E5.xlsx.
- CalcSmart Energy Star® Roof: This worksheet, used by AEP, is mostly identical to the Nexant calculator. This calculator can be found on the AEP website: http://www.aepefficiency.com/cisop/downloads/Cool%20Roof%20TCC_072213.xls. Accessed 09/12/2013.
- C&I Standard Offer Program Roofing Worksheet: CenterPoint and Xcel use the same method of calculating savings. This calculator can be found on the CenterPoint website:

http://www.centerpointenergy.com/staticfiles/CNP/Common/SiteAssets/doc/Roofing% 20Worksheet%202013.xlsx. Accessed 09/12/2013.

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Roofing Square Foot (Conditioned Area)

Existing Roofing Amount of Insulation

Existing Roofing Amount of Slope

Existing Roofing Reflectance

ENERGY STAR® Roofing Reflectance Coefficient

ENERGY STAR® Roofing Rated Life

ENERGY STAR® Roofing Insulation Value

Building Type

HVAC Equipment Type

HVAC Equipment Rated Efficiency

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 41070 – Provides deemed energy and demand savings values for El Paso, TX.

PUCT Docket 36779 – Provides EUL for commercial Cool Roof.

Relevant Standards and Reference Sources

Oncor Technical Resource Manual. 2013.

ENERGY STAR® Certified Cool Roof Products. http://www.energystar.gov/productfinder/product/certified-roof-products/. Accessed 09/12/2013.

IECC 2000 Table 802.2(17)

2006 ASHRAE Fundamentals

EUMMOT Commercial Standard Offer Program. Measurement and Verification Guidelines for Retrofit and New Construction Projects. http://www.aepefficiency.com/cisop/downloads/2013_C&I_SOP_Appendices.pdf. Accessed 09/10/2013

Document Revision History

Table 2-47: Nonresidential Cool Roof History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.3.2 Window Film Measure Overview

TRM Measure ID: NR-BE-WF Market Sector: Commercial Measure Category: Building Envelope Applicable Building Types: All Commercial Building Types Fuels Affected: Electricity Decision/Action Type: Retrofit (RET) Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Calculations, and Values (EPE-only)⁶² Savings Methodology: Calculator

Measure Description

This section presents the deemed savings methodology for the installation of window films and solar screens. The installation of window film decreases the window-shading coefficient and reduces the solar heat transmitted to the building space. During months when perimeter cooling is required in the building, this measure decreases cooling energy use. Demand and energy savings result in demand and energy use of cooling equipment.

Eligibility Criteria

This measure is applicable for window film applied to south- and west-facing windows only.⁶³

EPE states that windows with existing solar films, solar screens, or LowE coating are not eligible for this measure. Windows must be installed in a space conditioned by refrigerated air conditioning.

Baseline Condition

Baseline conditions are assumed to be single-pane clear glass, without any window film. Interior and exterior shading is acceptable, but should be recorded.⁶⁴

⁶² EPE's website provides a link to the CSOP Window Film Worksheet, but Docket No. 41070, which provides a method of energy savings for El Paso and similar climate regions, does not mention a calculator as a way for the utility to estimate savings. It only provides a deemed savings table based on HVAC type, per ft² of window area. EPE's Program Manual only mentions the algorithm method of calculating savings, which provides the same results as the calculator.

⁶³ El Paso Electric, in Docket No. 41070, states that windows must be predominantly east- or west-facing. EPE is the only utility to state this.

⁶⁴ EPE also states in Docket No. 41070 that the windows must NOT be shaded by existing awnings, exterior curtains, or blinds or any other shading device.

EPE states that the glass should be un-shaded, with a Solar Heat Gain Coefficient (SHGC) greater than 0.66. The Baseline window area is assumed to be 10% of the floor area.

High-Efficiency Condition

The high-efficiency condition is window film installed on south- and west-facing windows.

EPE states that the solar screen material should receive significant sun exposure and must reduce SHGC by at least 65%.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

All Utilities (Except EPE)

$$Demand Savings_{o} [kW] = \frac{A_{film,o} \times SHGF_{o} \times (SC_{pre,o} - SC_{post,o})}{3413 \times COP}$$

Equation 43

Peak Demand Savings
$$[kW] = DemandSaving_{o,max}$$

Equation 44

$$Energy Savings_{o} [kWh] = \frac{A_{film,o} \times SHG_{o} \times (SC_{pre,o} - SC_{post,o})}{3413 \times COP}$$

Equation 45

$$Energy Savings [kWh] = \sum Energy Savings_o$$

Equation 46

Where:

Demand Savings _o	=	Peak demand savings per window orientation
Energy Savings _o	=	Energy savings per window orientation
A _{film,o}	=	Area of window film applied to orientation [ft^2]
SHGF。	=	Peak solar heat gain factor for orientation of interest [Btu/hr-ft ² -year], See Table 2-48.

SHG₀	=	Solar heat gain for orientation of interest [Btu/ ft²-year], See Table 2-48.
SC _{pre}	=	Shading coefficient for existing glass/interior-shading device.
SC _{post}	=	Shading coefficient for new film/interior-shading device
COP	=	Cooling equipment COP or SEER based on ASHRAE Standard 90.1-1999 or actual COP equipment, whichever is greater
3413	=	Conversion factor [Btu/kW]

EPE Only

$$Energy Savings [kWh] = \frac{A_{film} \times SHG_{cool} \times (SC_{pre} - SC_{post})}{3413 \times COP_{cool}}$$

Equation 47

$$Energy Penalty [kWh] = \frac{A_{film} \times SHG_{heat} \times (SC_{pre} - SC_{post})}{3413 \times COP_{heat}}$$

Equation 48

Total Energy Savings [kWh] = Energy Savings - Energy Penalty

Equation 49

$$Demand \ Savings \ [kW] = \frac{A_{film} \times SHGF \times (SC_{pre} - SC_{post})}{3413 \times COP_{heat}}$$

Equation 50

Where:

A _{film}	=	Area of window film applied to orientation [ft ²]
SHGF	=	Peak solar heat gain factor in [Btu/hr-ft²-year], Assumed to be 220.24 Btu/hr-ft²-year.
SHG _{cool}	=	Solar heat gain during cooling operation in [Btu/ ft²-year], Assumed to be 102,501 Btu/ft²-year.

SHG _{heat}	=	Solar heat gain during heating operation in [Btu/ ft²-year], Assumed to be 284,662 Btu/ft²-year.
SC _{pre}	=	Shading coefficient for existing glass/interior-shading device. Assumed to be 0.680.
SC _{post}	=	Shading coefficient for new film/interior-shading device. Assumed to be 0.204.
COP _{cool}	=	Cooling equipment COP or SEER based on ASHRAE Standard 90.1-1999 or actual COP equipment, whichever is greater. Assumed to be 2.49.
COP _{heat}	=	Heating equipment COP or SEER based on ASHRAE Standard 90.1-1999 or actual COP equipment, whichever is greater. Assumed to 1.0.
3413	=	Conversion factor [Btu/kW]

Table 2-48: Solar Heat Gain Factors⁶⁵

Orientation	Solar Heat Gain {SHG) [Btu/ft²-year]	Peak Hour Solar Heat Gain (SHGF) [Btu/hr-ft ² -year]
South-East	158,323	59
South-South-East	133,894	119
South	120,095	164
South-South-West	133,894	189
South-West	158,323	219
West-South-West	168,978	228
West	162,388	220
West-North-West	139,995	208
North-West	106,876	176

Deemed Energy and Demand Savings Tables

Table 2-49:	Solar Screen	Deemed Saving	s for EPE (Weather	Zone 5)
-------------	--------------	----------------------	--------------------	---------

Utility	DX Coils with Gas Furnace [kWh/ft ²]	DX Coils Electric Resistance [kWh/ft ²]		Winter Peak (Electric Resistance) [kW/ft ²]	
EPE	15.94	1.64	0.013	0.0	

⁶⁵ SHGF are based on amount of solar radiation transmitted through single-pane clear glass for a cloudless day at 32°N Latitude for the 21st day of each month by hour of day and solar orientation. These have been aggregated into daily totals for weekdays during the months of April through October.

Measure Life and Lifetime Savings

Estimated Useful Life is 10 years for solar screens, as discussed in PUCT Docket Nos. 36779 and 41070. The original source is the DEER Final Report from December 2008.

Additional Calculators and Tools

Oncor Calculator: The calculator, created by Nexant, implements the savings algorithms listed above to calculate the total energy and peak demand savings.

CSOP Window Film Worksheet: This worksheet, used by AEP, is mostly identical to the Nexant calculator.

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Existing Window Shading Coefficients

Existing Window Interior Shading Type

Description of Existing Window Presence of Exterior Shading from other Buildings or Obstacles

Window Film Shading Coefficient

Window Film Application Area

Cooling Equipment Type

Cooling Equipment Rated Efficiency

Direction Window is Facing

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 41070 – Provides deemed energy and demand savings values for El Paso, TX.

PUCT Docket 36779 – Provides EUL for commercial Cool Roof.

Relevant Standards and Reference Sources

1997 ASHRAE Fundamentals, Chapter 29, Table 17.

ASHRAE Standard 90.1-1999

EUMMOT Commercial Standard Offer Program. Measurement and Verification Guidelines for Retrofit and New Construction Projects. http://www.aepefficiency.com/cisop/downloads/2013_C&I_SOP_Appendices.pdf. Accessed 09/10/2013

Oncor Technical Resource Manual. 2013.

El Paso Electric. Commercial Standard Offer Program. Measurement and Verification Guidelines for Retrofit and New Construction Projects. http://www.epelectricefficiency.com/files/EPE_MV_Guidelines_2013_110512_final.pd f. Accessed 09/11/2013

Document Revision History

Table 2-50: Nonresidential Window Film History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.4 NONRESIDENTIAL: FOOD SERVICE EQUIPMENT

2.4.1 High Efficiency Combination Ovens Measure Overview

TRM Measure ID: NR-FS-CO Market Sector: Commercial Measure Category: Food Service Equipment Applicable Business Types: See Table 2-52 and Table 2-53 Fuels Affected: Electricity Decision/Action Type: Replace-on-Burnout or New Construction Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Values Savings Methodology: Engineering estimates, Algorithms

Measure Description

This section presents the deemed savings methodology for the installation of High Efficiency Combination Ovens. Combination ovens are convection ovens that include the added capability to inject steam into the oven cavity and typically offers at least three distinct cooking modes; combination made to roast or bake with moist heat, convection mode to operate purely as a convection oven providing dry heat, or as a straight pressure-less steamer. The energy and demand savings are determined on a per-oven basis.

Eligibility Criteria

Eligible equipment must have a heavy load cooking efficiency of at least 60% as determined by American Society for Testing and Materials (ASTM) Standard Test Models.

Baseline Condition

A standard-efficiency combination oven as defined by the Food Service Technology Center (FSTC) and reflected by the default values from the FSTC Electric Combination Oven Life-cycle Cost Calculator⁶⁶ and are listed in Table 2-51. The baseline equipment is assumed to have a heavy-load cooking efficiency of 40%.

The following parameters are used by the FSTC calculator to calculate energy consumption of ovens. Their descriptions are as follows:

Number of steam pans: Total number of standard size steam pans the oven can hold.

⁶⁶ Food Service Technology Center. Electric Combination Oven Life-Cycle Cost Calculator. <u>http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php</u>. Accessed 09/08/2013.

- Preheat Energy: The total amount of energy consumed by the appliance as it warms from room temperature to a ready-to-cook condition.
- Convection Mode Idle Energy Rate. The rate the oven consumes energy while holding or maintaining a stabilized temperature with the oven operating in convection (heat-only) mode.
- Convection Mode Cooking-Energy Efficiency. The amount of energy imparted to the food being cooked divided by the energy consumed by the oven while cooking in convection (heat-only) mode.
- Convection Mode Production Capacity. The maximum production rate of the oven while cooking in convection (heat-only) mode in accordance with the heavy-load cooking test.
- Steam Mode Idle Energy Rate. The rate the oven consumes energy while holding or maintaining a stabilized temperature with the oven operating in steam-only mode.
- Steam Mode Cooking-Energy Efficiency. The amount of energy imparted to the food being cooked divided by the energy consumed by the oven while cooking in steam-only mode.
- Steam Mode Production Capacity. The maximum production rate of the oven while cooking in steam-only mode in accordance with the heavy-load cooking test.
- Water Consumption Rate. The average rate the appliance consumes water while cooking in accordance with the heavy-load cooking test.

High-Efficiency Condition

New, electric combination ovens with a heavy load cooking efficiency of at least 60% as determined by American Society for Testing and Materials (ASTM) Standard Test Models.

Inputs	Baseline	High-Efficiency
Number of Steam Pans	15	15
Preheat Energy [kWh]	3.75	2.00
Convection Mode Idle Energy Rate [kW]	3.75	2.50
Convection Mode Cooking-Energy Efficiency [%]	65%	70%
Convection Mode Production Capacity [lbs/hr]	100	125
Steam Mode Idle Energy Rate [kW]	12.5	6.0
Steam Mode Cooking-Energy Efficiency [%]	40%	50%
Steam Mode Production Capacity [lbs/hr]	150	200

Table 2-51: Assumptions for Baseline and High-Efficiency Electric Combination Ovens⁶⁷

⁶⁷ Default values from the FSTC Electric Combination Oven Life-Cycle Cost Calculator. These values are used to calculate Energy and Peak Demand Savings using the equations below.

Inputs	Baseline	High-Efficiency
Water Consumption Rate [gal/hr]	40	20

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The calculation for these deemed values are calculated based on the following algorithms:

 $Energy [kWh] = kWh_{base} - kWh_{post}$

Equation 51

$$Peak Demand [kW] = \frac{\Delta kWh}{t_{hrs} \times t_{days}} \times CF$$

Equation 52

Where:

kWh _{base}	=	Annual energy consumption of baseline equipment using FSTC default values
kWh _{post}	=	Annual energy consumption of energy efficient equipment using FSTC default values.
t _{days}	=	Facility operating days per year
t _{hours}	=	Equipment operating hours per day
CF	=	Peak coincidence factor

Deemed Energy and Demand Savings Tables

The energy and demand savings of High Efficiency Combination Ovens are deemed values. The following tables provide these deemed values.

Facility Description	t _{hours}	t _{days}	CF ⁶⁹	kWh _{base}	kWh _{post}
Fast Food 6am-Midnight	16	360	0.92	51,542	31,781
Fast Food 24 hr	20	360	0.92	64,269	39,636
Casual Dining 3pm-11pm	6	312	0.92	17,088	10,514
Casual Dining 11am-11pm	10	312	0.92	28,118	17,322
Casual Dining 24 hr	20	360	0.92	64,269	39,636
Institutional	8	365	0.92	26,436	16,272
School	4	180	0.32	6,673	4,097

Table 2-52: Annual Demand and Energy Savings with Summary of Key Parameters⁶⁸

Table 2-53: Deemed Energy and Demand Savings Values by Building Type⁷⁰

Facility Description	Annual Energy Savings [kWh]	Peak Demand Savings [kW]
Fast Food 6am-Midnight	19,761	3.154
Fast Food 24 hr	24,633	3.154
Casual Dining 3pm-11pm	6,574	3.236
Casual Dining 11am-11pm	10,796	3.187
Casual Dining 24 hr	24,633	3.154
Institutional	10,164	3.204
School	2,576	1.144

Claimed Peak Demand Savings

The approach/basis used to calculate peak demand savings is not described in program materials, and the CFs are relatively high compared to factors published in other TRMS in Southwestern states for some business types (like Schools).

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 12 years, consistent with ENERGY STAR[®] research.

⁶⁸ The FSTC "Electric Combination Oven Life-Cycle Cost Calculator" was used to determine the annual energy consumption of both baseline and energy efficient electric combination ovens. The FSTC calculator uses oven performance parameters based on ASTM Standard Test Method F2861. The FSTC calculator default values assume equipment is operating 12 hours a day, 365 days year. In an effort to account for variations in operation of different facility kitchens, calculator inputs for equipment operating hours and annual days of operation were assumed based on the facility types shown in Table 2-52.

⁶⁹ California End Use Survey (CEUS), Building workbooks with load shapes by end use, accessed July, 12 2012, http://capabilities.itron.com/CeusWeb/Chart.aspx.

⁷⁰ Energy and Peak Demand savings reported in PUCT Docket No. 40669. The savings reported here are based off of the assumed baseline and high efficiency values found in Table 2-51.

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Post-Retrofit Make and Model

Post-Retrofit Heavy Load Cooking Efficiency

Building TypeFor different facility types or specific applications, the methodology presented in this work paper can be followed, provided the following additional parameters are collected and documented:

Annual Days of Equipment Operation

Equipment Operating Hours per Day

Amount of Food Cooked per Day

Coincidence Factor

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications

Relevant Standards and Reference Sources

FSTC requirements for Commercial Combination Ovens. http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

Document Revision History

Table 2-54: Nonresidential High-Efficiency Combination Oven History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.4.2 High Efficiency Electric Convection Ovens Measure Overview

TRM Measure ID: NR-FS-CV Market Sector: Commercial Measure Category: Food Service Equipment Applicable Building Types: See Table 2-58 Fuels Affected: Electricity Decision/Action Type: Retrofit and New Construction Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Values Savings Methodology: Look-up Tables

Measure Description

This section covers the savings from retrofit (early retirement), replacement, or new installation of a full-size high efficiency electric convection oven. Convection ovens cook their food by forcing hot dry air over the surface of the food product. The rapidly moving hot air strips away the layer of cooler air next to the food and enables the food to absorb the heat energy. The energy and demand savings are deemed, and based off of energy rates of the oven, cooking efficiencies, operating hours, production capacities and building type. An average energy and demand consumption has been calculated based on these default values to create a stipulated savings value. These savings are determined on a per-oven basis.

Eligibility Criteria

Convection ovens eligible for rebate do not include ovens that have the ability to heat the cooking cavity with saturated or superheated steam. Maximum water consumption within the oven cavity must not exceed 0.25 gallons/hour. Eligible units must meet ENERGY STAR[®] qualifications.

Baseline Condition

Baseline oven assumptions are default operation parameters taken from the Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment⁷¹, and are listed below in Table 2-55.

⁷¹ ENERGY STAR[®]. Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment. http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment _calculator.xlsx. Accessed 09/09/2013.

Inputs	Values
Oven Size	Full-Size
Preheat Energy Rate [W]	6,000
Idle Energy Rate [W]	2,000
Heavy-Load Energy Efficiency [%]	65%

Table 2-55: Baseline Assumptions for Electric Convection Ovens

High-Efficiency Condition

New, full size electric convection ovens with a heavy load cooking efficiency of at least 70% as determined by American Society for Testing and Materials (ASTM) Standard Test Models and an idle energy rate of 1,600 watts are eligible. The high efficiency oven is assumed to have the characteristics shown in Table 2-56 below, which are a result of the default values from the Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment⁷¹. Full-size convection oven is a convection oven that is able to accept a minimum of five standard full-size sheet pans measuring 18x26x1-inch.

 Table 2-56:
 High-Efficiency Assumptions for Electric Convection Ovens

Inputs	Values
Oven Size	Full-Size
Preheat Energy Rate [W]	4,000
Idle Energy Rate [W]	1,600
Heavy-Load Energy Efficiency [%]	70%

Energy and Demand Savings Methodology

Savings Calculations and Input Variables

The deemed savings from these ovens are based on the following algorithms: $Energy [kWh] = (E_{base} - E_{HE}) \times days$

Equation 53

Peak Demand
$$[kW] = \frac{(E_{base} - E_{HE})}{T_{on}} \times CF$$

Equation 54

$$E_{base} = \frac{LB \times E_{Food}}{EFF_{base}} + \left[IDLE_{base} \times \left(T_{on} - \frac{LB}{PC_{base}} - \frac{TP}{60}\right)\right] + EP_{base}$$

Equation 55

$$E_{HE} = \frac{LB \times E_{Food}}{EFF_{HE}} + \left[IDLE_{HE} \times \left(T_{on} - \frac{LB}{PC_{HE}} - \frac{TP}{60}\right)\right] + EP_{HE}$$

Equation 56

Where:

$$E_{base}$$
 = Baseline daily energy consumption (kWh/day)

2-94 Nonresidential: Food Service Equipment High Efficiency Electric Convection Ovens

E _{HE}	=	High efficiency daily energy consumption (kWh/day)
LB	=	Pounds of food cooked per day [lb/day]
Days	=	Number of operating days per year [days/yr]
CF	=	Coincidence Factor
Efood	=	ASTM energy to food of energy absorbed by food product during cooking [Wh/lb]
EFF _{base}	=	Baseline heavy load cooking energy efficiency [%]
EFF_{HE}	=	High efficiency heavy load cooking energy efficiency [%]
<i>IDLE</i> _{base}	=	Baseline idle energy rate [kW]
IDLE _{HE}	=	High efficiency idle energy rate [kW]
T _{on}	=	Operating hours per day [hrs/day]
PC _{base}	=	Baseline production capacity [lbs/hr]
PC_{HE}	=	High efficiency production capacity [lbs/hr]
<i>EP</i> _{base}	=	Baseline preheat energy rate [kWh]
EP_{HE}	=	High efficiency preheat energy rate [kWh]
TP	=	Preheat time [min/day]

Variable	Deemed Values
LB ⁷⁴	Fast Food 6am-Midnight: 133 Fast Food 24hr: 167 Casual Dining 3pm-11pm: 50 Casual Dining 11am-11pm: 83 Casual Dining 24hr: 167 Institutional: 67 School: 33
Days	Fast Food 6am-Midnight: 360 Fast Food 24hr: 360 Casual Dining 3pm-11pm: 312 Casual Dining 11am-11pm: 312 Casual Dining 24hr: 360 Institutional: 365 School: 180
CF ⁷³	Fast Food 6am-Midnight: 0.92 Fast Food 24hr: 0.92 Casual Dining 3pm-11pm: 0.92 Casual Dining 11am-11pm: 0.92 Casual Dining 24hr: 0.92 Institutional: 0.92 School: 0.32
E _{food} ⁷⁴	73.2
EFF _{base} ⁷⁴	65%
EFF _{HE} ⁷⁴	70%
IDLE _{base} ⁷⁴	2.0%
IDLE _{HE} ⁷⁴	1.6%
T _{on}	Fast Food 6am-Midnight: 16 Fast Food 24hr: 20 Casual Dining 3pm-11pm: 6 Casual Dining 11am-11pm: 10 Casual Dining 24hr: 20 Institutional: 8 School: 4
PC _{base} ⁷⁴	70
PC _{HE} ⁷⁴	80
EP _{base} ⁷⁴	1.5

Table 2-57: Deemed Variables for Energy and Demand Savings Calculations⁷²

⁷³ California End Use Survey (CEUS), Building workbooks with load shapes by end use, accessed July12, 2012, http://capabilities.the EM&V team.com/CeusWeb/Chart.asnx.

⁷⁴ Default values in ENERGY STAR[®] calculator for Full Size Ovens.

⁷² The FSTC "Electric Combination Oven Life-Cycle Cost Calculator" was used to determine the annual energy consumption of both baseline and energy efficient electric combination ovens. The FSTC calculator uses oven performance parameters based on ASTM Standard Test Method F2861. The FSTC calculator default values assume equipment is operating 12 hours a day, 365 days year. In an effort to account for variations in operation of different facility kitchens, calculator inputs for equipment operating hours and annual days of operation were assumed based on the facility types shown in Table 2-58.

Variable	Deemed Values
EP _{HE} ⁷⁴	1.0
TP ⁷⁴	15

Deemed Energy and Demand Savings Tables

The energy and demand savings of High Efficiency Convection Ovens are deemed values based on an assumed capacity for the average convection oven installed The following tables provide these deemed values.

Table 2 00. Decined Energy and Demand Cavings Values by Danang Type			
Facility Description	Annual Energy Savings [kWh]	Peak Demand Savings [kW]	
Fast Food 6am-Midnight	2,423	0.394	
Fast Food 24 hr	2,992	0.378	
Casual Dining 3pm-11pm	865	0.427	
Casual Dining 11am-11pm	1,359	0.394	
Casual Dining 24 hr	2,992	0.378	
Institutional	1,301	0.411	
School	357	0.157	

Table 2-58: Deemed Energy and Demand Savings Values by Building Type

Claimed Peak Demand Savings

The approach/basis used to calculate the peak demand is not described in program materials, and the CFs are relatively high for some business types (like Schools).

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 12 years, consistent with ENERGY STAR $^{\rm ®}$ research. 74

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly. For facility types listed above, the following information should be collected:

Building Type

High Efficiency Equipment Manufacturer and Model Number

High Efficiency Equipment Heavy Load Cooking Efficiency

For measures not installed within the facility types listed in Table 2-58, or other specific applications, the following additional information must be collected:

Annual days of equipment operation

Equipment operating hours per day

Amount of food cooked per day

Coincidence factor

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications

Relevant Standards and Reference Sources

ENERGY STAR® requirements for Commercial Ovens. http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup &pgw_code=COO. Accessed 11/25/2013.

ENERGY STAR® list of Qualified Commercial Ovens. http://downloads.energystar.gov/bi/qplist/Commercial_Ovens_Product_List.pdf. Accessed 11/25/2013.

Document Revision History

Table 2-59: Nonresidential High-Efficiency Convection Oven History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.4.3 ENERGY STAR[®] Commercial Dishwashers Measure Overview

TRM Measure ID: NR-FS-DW Market Sector: Commercial Measure Category: Food Service Equipment Applicable Building Types: See Table 2-64 Fuels Affected: Electricity Decision/Action Type: Retrofit and New Construction Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Values Savings Methodology: Look-up Tables

Measure Description

This document presents the deemed savings methodology for the installation of an ENERGY STAR[®] commercial dishwasher. Commercial dishwashers that have earned the ENERGY STAR[®] label are on average 25% more energy-efficient and 25% more water-efficient than standard models. The energy savings associated with ENERGY STAR[®] commercial dishwashers is primarily due to reduced water use and reduced need to heat water. A commercial kitchen may have external booster water heaters or booster water heaters may be internal to specific equipment. Both primary and booster water heaters may be either gas or electric; therefore, dishwasher programs need to assure the savings calculations used are appropriate for the water heating equipment installed at the participating customer's facility. The energy and demand savings are determined on a per-dishwasher basis.

Eligibility Criteria

The dishwasher must be ENERGY STAR[®] certified and fall under one of the following categories:

Under Counter Dishwasher

Stationary Rack, Single Tank, Door Type Dishwasher

Single Tank Conveyor Dishwasher

Multiple Tank Conveyor Dishwasher

Table 2-60 provides a description of each of these.

Equipment Type	Equipment Description
Under Counter Dishwasher	A machine with overall height of 38" or less, in which a rack of dishes remains stationary within the machine while being subjected to sequential wash and rinse sprays, and is designed to be installed under food preparation workspaces. Under counter dishwashers can be either chemical or hot water sanitizing, with an internal booster heater for the latter. For purposes of this specification, only those machines designed for wash cycles of 10 minutes or less can qualify for ENERGY STAR [®] .
Stationary Rack, Single Tank, Door Type Dishwasher	A machine in which a rack of dishes remains stationary within the machine while subjected to sequential wash and rinse sprays. This definition also applies to machines in which the rack revolves on an axis during the wash and rinse cycles. Subcategories of stationary door type machines include: single and multiple wash tank, double rack, pot, pan and utensil washers, chemical dump type and hooded wash compartment ("hood type"). Stationary rack, single tank, door type models are covered by this specification and can be either chemical or hot water sanitizing, with an internal or external booster heater for the latter.
Single Tank Conveyor Dishwasher	A washing machine that employs a conveyor or similar mechanism to carry dishes through a series of wash and rinse sprays within the machine. Specifically, a single tank conveyor machine has a tank for wash water followed by a final sanitizing rinse and does not have a pumped rinse tank. This type of machine may include a pre- washing section before the washing section. Single tank conveyor dishwashers can either be chemical or hot water sanitizing, with an internal or external booster heater for the latter.
Multiple Tank Conveyor Dishwasher	A conveyor type machine that has one or more tanks for wash water and one or more tanks for pumped rinse water, followed by a final sanitizing rinse. This type of machine may include one more pre-washing sections before the washing section. Multiple tank conveyor dishwashers can be either chemical or hot water sanitizing, with an internal or external hot water booster heater for the latter.

Table 2-60: Nonresidential ENERGY STAR[®] Commercial Dishwashers History

Baseline Condition

Baseline assumptions of water consumption for dishwashers are default values from the Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment⁷⁵ and are listed next in Table 2-61.

⁷⁵ <u>http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COH.</u>

	Low	Тетр		High Temp			
Under Counter	Door Type	Single Tank Conveyor	Multi Tank Conveyor	Under Counter	Door Type	Single Tank Conveyor	Multi Tank Conveyor
1.95	1.85	1.23	0.99	1.98	1.44	1.13	1.1

 Table 2-61: Baseline Water Consumption in Gallons per Rack of Dishes Washed⁷⁶

High-Efficiency Condition

Qualifying equipment must meet or exceed the ENERGY STAR[®] V1.2 specification. High temperature equipment sanitizes using hot water, and requires a booster heater. Booster heaters can be either gas or electric. Low temperature equipment uses chemical sanitization, and does not require a booster heater. The high efficiency dishwasher is assumed to have the characteristics shown in Table 2-62 below.

Table 2-62: High-Efficiency Requirements for Commercial Dishwashers⁷⁶

Machine Type		ture Efficiency ements	Low Temperature Efficiency Requirements		
macinite Type	Idle Energy Rate	Water Consumption	Idle Energy Rate	Water Consumption	
Under Counter	≤ 0.90 kW	≤ 1.00 gal/rack	≤ 0.50 kW	≤ 1.70 gal/rack	
Stationary Single Tank Door	≤ 1.0 kW	≤ 0.95 gal/rack	≤ 0.60 kW	≤ 1.18 gal/rack	
Single Tank Conveyor	≤ 2.0 kW	≤ 0.70 gal/rack	≤ 1.6 kW	≤ 0.79 gal/rack	
Multiple Tank Conveyor	≤ 2.6 kW	≤ 0.54 gal/rack	≤ 2.0 kW	≤ 0.54 gal/rack	

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The calculation for these deemed values are calculated based on the following algorithms: Energy [kWh] =

$$(V_{waterB} - V_{waterP}) \times \left(\frac{\Delta T_{DHW}}{\eta_{DHW}} + \frac{\Delta T_{boost}}{\eta_{boost}}\right) \times \rho_{water} \times C_p \times \frac{1 W}{3.412 \frac{Btu}{hr}} \times \frac{1 kW}{1000 W}$$
Equation 57

$$Peak Demand [kW] = \frac{\Delta kWh}{t_{hrs} \times t_{days}} \times CF$$

Equation 58

Baseline Annual Water Consumption [gallons] =
$$V_{waterB} = t_{days} \times N_{racks} \times V_{galrackB}$$

Equation 59

⁷⁶ Table 2-61 and Table 2-62 values are listed in Docket 40669. The docket states that they come from ENERGY STAR[®], but the values listed in the newest ENERGY STAR[®] calculator have been updated.

Where:

V _{waterB}	=	Baseline volume of water consumed per year [gallons]
V _{waterP}	=	Post measure volume of water consumed per year [gallons]
t _{days}	=	Facility operating days per year [days]
t _{hours}	=	Equipment operating hours per day [hours]
N _{racks}	=	Number of racks washed per days
CF	=	Peak coincidence factor
$V_{galrackB}$	=	Gallons of water used per rack of dishes washed for conventional dishwashers [gallons]
$V_{galrackP}$	=	Gallons of water used per rack of dishes washed for ENERGY STAR [®] dishwashers [gallons]
P_{water}	=	Density of water [lbs/gallon]
$C_{ ho}$	=	Specific heat of water [Btu/lb ºF]
ΔT_{DHW}	=	Inlet water temperature increase for building water heater [ºF]
η_{DHW}	=	Building electric water heater efficiency [%]
ΔT_{boost}	=	Inlet water temperature for booster water heater [°F]
η_{boost}	=	Booster electric water heater efficiency [%]

Table 2-63: Deemed Variables for Energy and Demand Savings Calculations

Variable	Deemed Values				
V _{waterB} ⁷⁷	Coloulated based on equations above				
V _{waterP} ⁷⁷	Calculated based on equations above				
t _{days} ⁷⁸					
t _{hours} ⁷⁸	Varias by building type: Sac Table 2.64				
N _{racks}	Varies by building type: See Table 2-64				
CF					

⁷⁷ Calculated using ENERGY STAR[®] Calculator inputting racks washed per day and annual days of operation from Table 2-63.

⁷⁸ The current version of the ENERGY STAR[®] Qualified Commercial Kitchen Equipment savings calculator defaults to 365 annual days of operation for all dishwasher types, and assumes a default number of racks washed per day for each specific dishwasher type. The ENERGY STAR[®] default values are shown in Table 2-62. However, many facilities do not operate dishwashing equipment 365 days a year or wash the ENERGY STAR[®] default number of racks washed per day per dishwasher. In an effort to account for variations in operation of different facility kitchens, values for equipment annual days of operation, equipment operating hours, and number of racks washed per day were assumed based on facility operating hours and seasonal schedules.

Variable	Deemed Values
V _{galrackB}	See Table 2-51
V _{galrackP}	See Table 2-56
P _{water}	8.33 [lbs/gallon]
C _p	1.0 [Btu/lb °F]
ΔT_{DHW}^{79}	Gas Hot Water Heaters: 0°F Electric Hot Water Heaters: 70 °F
η _{DHW} ⁷⁹	95%
ΔT_{boost}^{79}	Gas Booster Heaters: 0 °F Electric Booster Heaters: 40 °F
η_{boost}^{79}	95%

Table 2-64: Assumed Facility Annual Days of Operation and Racks Washed per Day for Both Low and High Temperature Dishwashers

				N _{racks}					
Facility Description	t _{days}	t _{hours}	CF ⁸⁰	Under Counter	Door Type	Single Tank Conveyor	Multiple Tank Conveyor		
Fast Food 6am-Midnight	360	16	0.97	15	56	80	120		
Fast Food 24 hr	360	20	0.97	19	70	100	150		
Casual Dining 3pm-11pm	312	6	0.97	26	98	140	210		
Casual Dining 11am-11pm	312	10	0.97	38	140	200	300		
Casual Dining 24 hr	360	20	0.97	56	210	300	450		
Institutional	365	8	0.97	56	210	300	450		
School	180	4	0.49	19	70	100	150		

Deemed Energy and Demand Savings Tables

The energy and demand savings of High Efficiency Dishwashers are deemed values based on an assumed capacity for the average convection oven installed The following tables provide these deemed values.

⁷⁹ ENERGY STAR[®]. "Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment." Accessed 9/19/11. ⁸⁰ California End Use Survey (CEUS), Building workbooks with load shapes by end use, accessed July

^{12, 2012,} http://capabilities.the EM&V team.com/CeusWeb/Chart.aspx.

Table 2-65: Deemed Energy and Peak Demand Savings Values by Building Type for Low Temperature Dishwashers Supplied with Hot Water from an Electric Hot Water Heater

Facility Description	Under Counter		Door Type		Single Tank Conveyor		Multi Tank Conveyor	
	kWh	kW	kWh	kW	kWh	kW	kWh	kW
Fast Food 6am- Midnight	239	0.040	2,392	0.404	2,244	0.378	3,443	0.580
Fast Food 24 hr	303	0.042	2,990	0.404	2,805	0.378	4,303	0.580
Casual Dining 3pm- 11pm	359	0.185	3,628	1.879	3,403	1.763	5,221	2.706
Casual Dining 11am- 11pm	525	0.163	5,182	1.611	4,862	1.512	7,459	2.319
Casual Dining 24 hr	893	0.120	8,970	1.209	8,415	1.135	12,909	1.739
Institutional	905	0.301	9,094	3.021	8,532	2.834	13,089	4.348
School	151	0.103	1,495	1.018	1,403	0.955	2,152	1.464

Table 2-66: Deemed Energy and Peak Demand Savings Values by Building Type for HighTemperature Dishwashers Supplied with Hot Water from an Electric Hot Water Heater Using anElectric Booster Heater

Facility Description	Under Counter		Door Type		Single Tank Conveyor		Multi Tank Conveyor	
	kWh	kW	kWh	kW	kWh	kW	kWh	kW
Fast Food 6am- Midnight	1,473	0.248	2,749	0.462	3,446	0.580	6,732	1.135
Fast Food 24 hr	1,865	0.251	3,436	0.462	4,308	0.580	8,415	1.135
Casual Dining 3pm- 11pm	2,212	1.147	4,169	2.160	5,227	2.709	10,210	5.290
Casual Dining 11am- 11pm	3,233	1.005	5,956	1.852	7,467	2.321	14,586	4.535
Casual Dining 24 hr	5,498	0.741	10,308	1.389	12,923	1.741	25,245	3.402
Institutional	5,574	1.852	10,452	3.471	13,103	4.353	25,596	8.503
School	933	0.635	1,718	1.170	2,154	1.466	4,208	2.864

Table 2-67: Deemed Energy and Peak Demand Savings Values by Building Type for HighTemperature Dishwashers Supplied with Hot Water from a Gas Hot Water Heater Using an ElectricBooster Heater

Facility Description	Under Counter		Door Type		Single Tank Conveyor		Multi Tank Conveyor	
	kWh	kW	kWh	kW	kWh	kW	kWh	kW
Fast Food 6am- Midnight	536	0.090	1,000	0.168	1,253	0.211	2,448	0.412
Fast Food 24 hr	678	0.092	1,250	0.168	1,566	0.211	3,060	0.412
Casual Dining 3pm- 11pm	804	0.417	1,516	0.786	1,901	0.986	3,713	1.924
Casual Dining 11am- 11pm	1,176	0.365	2,166	0.674	2,715	0.844	5,304	1.649
Casual Dining 24 hr	1,999	0.268	3,749	0.506	4,699	0.634	9,180	1.237
Institutional	2,027	0.674	3,801	1.263	4,765	1.583	9,308	3.092
School	339	0.230	625	0.425	783	0.533	1,530	1.042

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 11 years, consistent with ENERGY STAR[®] research.

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Baseline Dishwasher Type Baseline Make and Model Number Post-Retrofit Dishwasher Type Post-Retrofit Make and Model Number Building Type Energy Source for Primary Water Heater Energy Source for Booster Water Heater Annual Days of Operation Number of Racks of Dishes Washed per Day

Coincidence Factor

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications

Relevant Standards and Reference Sources

ENERGY STAR® requirements for Commercial Dishwashers. http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup &pgw_code=COH. Accessed 08/08/2013.

ENERGY STAR® maintains an online list of qualified commercial dishwashers meeting or exceeding ENERGY STAR® requirements at: http://www.energystar.gov/iL/products/prod lists/comm dishwashers prod list.xls. Accessed 08/08/2013.

Document Revision History

Table 2-68: Nonresidential ENERGY STAR[®] Commercial Dishwashers History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.4.4 Hot Food Holding Cabinets Measure Overview

TRM Measure ID: NR-FS-HC Market Sector: Commercial Measure Category: Food Service Equipment Applicable Building Types: See Table 2-71 Fuels Affected: Electricity Decision/Action Type: Retrofit and New Construction Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Values Savings Methodology: Look-up Tables

Measure Description

This section covers the energy and demand savings resulting in the installation of ENERGY STAR[®] qualified hot food holding cabinets. Models that meet these ENERGY STAR[®] specifications incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door gaskets, auto-door closers, or Dutch doors. The insulation of the cabinet offers better temperature uniformity with the cabinet from top to bottom. The energy and demand savings are deemed, and based off of an interior volume range of the holding cabinets and the building type. An average wattage has been calculated for each volume range, half size, three quarter size, and full size. Additionally, an average hours of operation has been estimated for each building type, so achieve a stipulated savings value. These savings are determined on a per-cabinet basis.

Eligibility Criteria

Hot food holding cabinets must be ENERGY STAR[®] certified.⁸¹

Baseline Condition

Eligible baseline equipment is assumed to be a standard hot food holding cabinet with a maximum idle energy rate of 40 watts/ft³ for all equipment sizes.

High-Efficiency Condition

Eligible equipment are set by ENERGY STAR[®] and based on the cabinet's interior volume. Table 2-69 summarizes efficiency requirements per ENERGY STAR[®] Version 2.0:

⁸¹ A list of ENERGY STAR[®] qualified products can be found on the ENERGY STAR[®] website: <u>http://www.energystar.gov/productfinder/product/certified-commercial-hot-food-holding-cabinets/results</u>. Accessed 08/05/2013.

Product Category	Product Interior Volume (V) [ft ³]	Product Idle Energy Consumption Rate [W]
Half Size	0 < V < 13	≤ 21.5 V
Three-Quarter Size	13 ≤ V ≤ 28	≤ 2.0 V + 254.0
Full Size	28 ≤ V	≤ 3.8 V + 203.5

Table 2-69: ENERGY STAR[®] Requirements for Commercial Hot Food Holding Cabinets

Energy and Demand Savings Methodology

Savings Calculations and Input Variables

The calculation for these deemed values are calculated based on the following algorithms:

$$Energy [kWh] = (W_B - W_P) \times V \times \frac{1}{1000} \times t_{hrs} \times t_{days}$$

Equation 60

Peak Demand
$$[kW] = (W_B - W_P) \times V \times \frac{1}{1000} \times CF$$

Equation 61

Where:

W _B	=	Baseline idle energy consumption [W/ft ³]
W_P	=	Idle energy consumption after installation [W/ft ³]
V	=	Nominal interior volume of equipment [ft ³]
t _{hrs}	=	Equipment operating hours per day [hrs]
t _{days}	=	Facility operating days per year
CF	=	Peak coincidence factor

Category	Nominal Interior Volume	Baseline Equipment Idle Energy Consumption [W/ft ³] ⁸²	Efficient Equipment Idle Energy Consumption [W/ft ³] ⁸³	
Half Size	8	40	24	
Three-Quarter Size	12	40	19	
Full Size	20	40	11	

Table 2-70: Baseline and Energy Efficient Equipment Daily Energy Consumption

Table 2-71: Equipment Operating Hours per Day and Facility Operating Days per Year⁸⁴

Facility Description	Operating Hours per Day	Facility Operating Days per Year	Peak Coincidence Factor ⁸⁵	
Fast Food 6am-Midnight	16	360	0.92	
Fast Food 24 hr	20	360	0.92	
Casual Dining 3pm-11pm	6	312	0.92	
Casual Dining 11am-11pm	10	312	0.92	
Casual Dining 24 hr	20	360	0.92	
Institutional	8	365	0.92	
School	4	180	0.32	

Deemed Energy and Demand Savings Tables

The energy and demand savings of Electric Hot Food Holding Cabinets are deemed values. The following tables provide these deemed values.

⁸² ENERGY STAR[®] Version 2.0 Hot Food Holding Cabinet specification goes into effect on October 1, 2011. The new version increases the required efficiency from the previous requirement of 40 watts/ft³. Current ENERGY STAR[®] qualified equipment averages 40-73% more efficient than 40 watts/ft³.

 ⁸³ Average of idle energy rates for products listed on current ENERGY STAR[®] qualified products list for each size category. Accessed 9/15/11. http://www.energystar.Qov/ia/products/prod lists/HFHC prod list.xls

⁸⁴ A list of common facilities, equipment operating hours and operating days was assumed. Equipment operating hours and operating days were assumed based on facility operating hours and seasonal schedules.

 ⁸⁵ California End Use Survey (CEUS), Building workbooks with load shapes by end use, accessed July 12 2012, http://capabilities.the EM&V team.com/CeusWeb/Chart.aspx

Facility Description	Size	Annual Energy Savings [kWh]	Peak Demand Savings [kW]	
	Half	691	0.115	
Fast Food 6am-Midnight	Three-Quarter	1,361	0.230	
	Full	3,132	0.526	
	Half	922	0.115	
Fast Food 24 hr	Three-Quarter	1,814	0.230	
	Full	4,176	0.526	
	Half	240	0.115	
Casual Dining 3pm-11pm	Three-Quarter	472	0.230	
	Full	1,086	0.526	
	Half	399	0.115	
Casual Dining 11am-11pm	Three-Quarter	786	0.230	
	Full	1,810	0.526	
	Half	922	0.115	
Casual Dining 24 hr	Three-Quarter	1,814	0.230	
	Full	4,176	0.526	
	Half	374	0.115	
Institutional	Three-Quarter	736	0.230	
	Full	1,694	0.526	
	Half	92	0.041	
School	Three-Quarter	181	0.082	
	Full	418	0.184	

Table 2-72: Deemed Energy and Demand Savings Values by Building Type

Additional Calculators and Tools

N/A

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 12 years per the PUCT approved Texas EUL filing (Docket No. 36779), and is consistent with ENERGY STAR[®]'s research⁸⁶.

⁸⁶ ENERGY STAR[®] measure life based on Food Service Technology Center (FSTC) research on available models, 2009. ENERGY STAR[®]. "Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment." http://www.energystar.gov/ia/business/bulkpurchasinglb sp avings calc/commercial kitchen equipment calculator.xls. Accessed 9/14/11.

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Baseline Equipment Interior Cabinet Volume Baseline Equipment Idle Energy Rate Post-Retrofit Equipment Interior Cabinet Volume Post-Retrofit Equipment Size (Half, Three-Quarters, Full) Building Type For different facility types or specific applications, the methodology presented in the paper can be followed provided the additional parameters are collected and documented.

Annual Days of Equipment Operation

Equipment Operating Hours per Day

Coincidence Factors

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications

PUCT Docket 36779 - Provides EUL for Hot Food Holding Cabinets

Relevant Standards and Reference Sources

ENERGY STAR® requirements for Hot Food Holding Cabinets. http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup &pgw_code=COM

Document Revision History

Table 2-73: Nonresidential Hot Food Holding Cabinets History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.4.5 ENERGY STAR[®] Electric Fryers Measure Overview

TRM Measure ID: NR-FS-EF Market Sector: Commercial Measure Category: Cooking Equipment Applicable Building Types: See Table 2-77 Fuels Affected: Electricity Decision/Action Type: Replace-on-Burnout or New Construction Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Values Savings Methodology: Look-up Tables

Measure Description

This section presents the deemed savings methodology for the installation of an ENERGY STAR[®] Electric Fryer. Fryers which have earned the ENERGY STAR[®] rating, offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Fry pot insulation reduces standby losses resulting in a lower idle energy rate. The energy and demand savings are determined on a per-fryer basis.

Eligibility Criteria

Eligible equipment can be found on the ENERGY STAR[®] list of qualified equipment⁸⁷.

Baseline Condition

Baseline fryer assumptions are assumed to be an existing or new electric fryer ≥12 inches < 18 inches wide that does not meet ENERGY STAR[®] product criteria. Its operation criteria and default efficiencies are found in the Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment⁸⁸, and are listed below in Table 2-74.

⁸⁷ ENERGY STAR[®] Qualified Commercial Fryers. List Posted on May 15th, 2012.

http://www.energystar.gov/ia/products/prod_lists/Fryers_prod_list.pdf. Accessed 09/09/2013. ⁸⁸ ENERGY STAR[®]. Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment _calculator.xlsx. Accessed 09/09/2013.

Inputs	Values
Cooking energy efficiency	75%
Production capacity [lbs/hr]	65
Number of preheats per day	1
Preheat length [min]	13
Preheat energy rate [W]	10,615
Idle energy rate [W]	1,050

Table 2-74: Baseline Assumptions for Electric Fryers

High-Efficiency Condition

New electric fryers \geq 12 inches and < 18 inches wide that meet or exceed the ENERGY STAR[®] requirements listed below in Table 2-56.

Table 2-75:	High-Efficiency	Requirements	for Electric Fryers
-------------	------------------------	--------------	---------------------

Inputs	Values
Cooking energy efficiency	≥ 80%
Idle energy rate [W]	≤ 1,000

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The calculation for these deemed values are calculated based on the following algorithms:

$$Energy [kWh] = kWh_{base} - kWh_{post}$$

Equation 62

$$Peak Demand [kW] = \frac{\Delta kWh}{t_{hrs} \times t_{days}} \times CF$$

Equation 63

$$\eta_{PC} = \frac{W_{defaultFood}}{C_{CapAvg} \times t_{defaultHrs}} = \frac{150 \left[\frac{lbs}{day}\right]}{\frac{65 + 70}{2} \left[\frac{lb}{hr}\right] \times 16 \left[\frac{hr}{day}\right]} = 13.9\%$$

Equation 64

 $W_{food} = C_{pan} \times t_{OpHrs} \times \eta_{PC}$

Equation 65

Where:

kWh _{base}	=	Baseline annual energy consumption [kWh]
kWh _{post}	=	Post annual energy consumption [kWh]
N _{preheat}	=	Number of preheats per day
$t_{preheatP}$	=	Post measure length of each preheat [min]
$t_{preheatB}$	=	Baseline length of each preheat [min]
E _{prerateP}	=	Post preheat energy rate [W]
$E_{prerateB}$	=	Baseline preheat energy rate [W]
<i>W</i> _{food}	=	Pounds of food cooked per day [lb/day]
E_{food}	=	ASTM energy to food [Wh/lb]
$\eta_{ ext{cookingP}}$	=	Post measure cooking energy efficiency [%]
$\eta_{{ m cookingB}}$	=	Baseline cooking energy efficiency [%]
E _{IdleP}	=	Post measure idle energy rate [W]
E _{IdleB}	=	Baseline idle energy rate [W]
C_{CapP}	=	Post measure production capacity per pan [lb/hr]
C_{CapB}	=	Baseline production capacity per pan [lb/hr]
t _{Days}	=	Facility operating days per year [days/yr]
t _{OpHrs}	=	Average daily operating hours per day [hr]
$\eta_{\scriptscriptstyle PC}$	=	Percent of rated production capacity [%]
CF	=	Peak coincidence factor

Parameter	Baseline Value	Post Retrofit Value			
kWh _{base}	See				
kWh _{post}	Tabl	e 2-77			
E _{PreHeat}	10,615	6,800			
N _{PreHeat}	1	1			
t _{PreHeat}	13	15			
W _{food}	See Table	See Table 2-77			
E _{food}	167	167			
$\eta_{cooking}$	75%	80%			
E _{idleB}	1,050	1,000			
$t_{OpHours}$	See Table	e 2-77			
C_{Cap}	65	70			
t _{Days}	See Table	e 2-77			
η _{PC}	13	13.9%			
CF	See	e 2-77			

Table 2-76: Deemed Variables for Energy and Demand Savings Calculations⁸⁸

Facility Description	t _{OpHrs}	t _{Days}	CF ⁹⁰	W_{food}	kWh _{base}	kWh _{post}
Fast Food 6am-Midnight	18	360	0.92	163	19,669	18,414
Fast Food 24 hr	20	360	0.92	181	21,763	20,394
Casual Dining 3pm-11pm	6	312	0.92	54	6,092	5,601
Casual Dining 11am-11pm	10	312	0.92	90	9,722	9,033
Casual Dining 24 hr	20	360	0.92	181	21,763	20,394
Institutional	8	365	0.92	72	9,250	8,560
School	4	180	0.32	36	2,467	2,241

 ⁸⁹ The pre- and post- energy values are calculated using the ENERGY STAR[®] calculator and the inputs from Table 2-76 and Table 2-77.
 ⁹⁰ California End Use Survey (CEUS), Building workbooks with load shapes by end use, accessed July12, 2012, http://capabilities.the EM&V team.com/CeusWeb/Chart.aspx.

Deemed Energy and Demand Savings Tables

The energy and demand savings of Electric Fryers are deemed values. The following tables provide these deemed values.

	-	
Facility Description	Annual Energy Savings [kWh]	Peak Demand Savings [kW]
Fast Food 6am-Midnight	1,255	0.177
Fast Food 24 hr	1,369	0.174
Casual Dining 3pm-11pm	491	0.242
Casual Dining 11am-11pm	689	0.204
Casual Dining 24 hr	1,369	0.174
Institutional	690	0.217
School	226	0.101

 Table 2-78: Deemed Energy and Demand Savings Values by Building Type

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 12 years per the PUCT approved Texas EUL filing (Docket No. 36779).

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Building Type

Manufacturer and Model Number

Fryer Width

Verification of ENERGY STAR® certification

For different facility types, the methodology presented in this template can be followed, provided additional parameters are collected and documented.

Annual days of equipment operation

Equipment operating hours per day

Amount of food cooked per day

Coincidence factor

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications

PUCT Docket 36779 – Provides EUL for Electric Fryers

Relevant Standards and Reference Sources

• ENERGY STAR[®] requirements for Electric Fryers <u>http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&p</u> <u>gw_code=COF</u>. Accessed 09/09/2013

Document Revision History

Table 2-79: Nonresidential Electric Fryers History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.4.6 Pre-Rinse Spray Valves Measure Overview

TRM Measure ID: NR-FS-SV Market Sector: Commercial Measure Category: Food Service Equipment Applicable Building Types: See Table 2-81 Fuels Affected: Electricity Decision/Action Type: Retrofit Program Delivery Type: Direct Install or Point of Sale Deemed Savings Type: Deemed Values Savings Methodology: Deemed

Measure Description

This document presents the deemed savings methodology for the installation of Pre-Rinse Sprayers to reduce hot water usage to save energy associated with heating the water. Water heating is assumed to be electric. The energy and demand savings are determined on a persprayer basis. Installation of Pre-Rinse Spray Valves to reduce energy consumption associated with heating the water.

Eligibility Criteria

Pre-rinse spray valves must have a maximum flow rate no greater than 1.28 GPM. Units must be used for commercial food preparation only.

Baseline Condition

Eligible baseline equipment is pre-rinse sprayer using 2.25 GPM.⁹¹

High-Efficiency Condition

Eligible equipment is a pre-rinse sprayer using 1.28 GPM or less. The sprayer should be capable of the same cleaning ability as the old sprayer.^{91, 92}

⁹¹ Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007.

⁹² FEMP Performance Requirements for Federal Purchases of Pre-Rinse Spray Valves, Based on ASTM F2324-03: Standard Test Method for Pre-Rinse Spray Valves.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The calculation for these deemed values are calculated based on the following algorithms:

$$Energy [kWh] = (F_B \times U_B - F_P \times U_P) \times \frac{Days}{Year} \times (T_H - T_C) \times C_H \times \frac{C_E}{Eff_E}$$

Equation 66

$$Peak Demand [kW] = P \times (F_B \times U_B - F_P \times U_P) \times (T_H - T_C) \times C_H \times \frac{C_E}{Eff_E}$$

Equation 67

Where:

F _B	=	Average Baseline Flow Rate of Sprayer (GPM)
F _P	=	Average Post Measure Flow Rate of Sprayer (GPM)
U _B	=	Baseline Water Usage Duration
U_P	=	Post-Retrofit Water Usage Duration
T _H	=	Average mixed hot water (after spray valve) temperature (°F)
T_C	=	Average supply (cold) water temperature (°F)
Days	=	Annual facility operating days for the applications
C _H	=	Unit Conversion: 8.33 BTU/(Gallons-ºF)
C _E	=	Unit Conversion: 1 BTU = 0.00029308 kWh (1/3412)
Eff _E	=	Efficiency of Electric Water Heater
Р	=	Hourly Peak Demand as percent of Daily Demand

Variable	Deemed Values
F _B	2.25 ⁹¹
F _P	1.28 ^{91,92}
U _B	Fast Food Restaurant: 45 min/day/unit ⁹³ Casual Dining Restaurant: 105 min/day/unit ⁹³ Institutional: 210 min/day/unit ⁹³ Dormitory: 210 min/day/unit ⁹³ K-12 School: 105 min/day/unit ⁹⁴
U _P	Fast Food Restaurant: 45 min/day/unit ⁹³ Casual Dining Restaurant: 105 min/day/unit ⁹³ Institutional: 210 min/day/unit ⁹³ Dormitory: 210 min/day/unit ⁹³ K-12 School: 105 min/day/unit ⁹⁴
T _H	120 ⁹⁵
T _c	69 ⁹⁶
Days ⁹⁷	Fast Food Restaurant: 360 Casual Dining Restaurant: 360 Institutional: 360 Dormitory: 270 K-12 School: 193
Сн	8.33
C _E	0.00029308
Eff _E	1.0
P ⁹⁸	Fast Food Restaurant: 6.81%

Table 2-80: Deemed Variables for Energy and Demand Savings Calculations

⁹³ CEE Commercial Kitchens Initiative Program Guidance on Pre-Rinse Valves.

⁹⁴ Assuming that institutions (e.g., prisons, university dining halls, hospitals, nursing homes) are serving three meals a day, prorate schools by 1.5hrs to 3hrs (assuming schools serve breakfast to half of the students and lunch to all), yielding 105 minutes per day.

⁹⁵ According to ASTM F2324-03 Cleanability Test, the optimal operating conditions are at 120°F. This test consists of cleaning a plate of dried tomato sauce in less than 21 seconds with $120 \pm 4^{\circ}$ F water at a specified distance from the plate. This test is performed at 60 ± 2 psi of flowing water pressure.

⁹⁶ FEMP Performance Requirements for Federal Purchases of Pre-Rinse Spray Valves, Based on ASTM F2324-03: Standard Test Method for Pre-Rinse Spray Valves. Average calculated input water temperature for five Texas climate region cities.

⁹⁷ For facilities that operate year round: assume operating days of 360 days/year; For schools open weekdays except summer: 360 x(5/7) x (9/12) = 193; For dormitories with few occupants in the summer: 360 x (9/12) = 270.

⁹⁸ ASHRAE Handbook 2011. HVAC Applications. Chapter 50 - Service Water Heating American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA. The Hourly Flow Profiles given in Figure 24 on page 50.19, were reviewed and A-85 118 analyzed.

Variable	Deemed Values
	Casual Dining Restaurant: 17.36%
	Institutional: 5.85%
	Dormitory: 17.36%
	K-12 School: 11.35%

Deemed Energy and Demand Savings Tables

The energy and demand savings of Pre-Rinse Sprayers are deemed values. The following table provides these deemed values.

Table 2-81: Deemed Energy and Demand Savings Values by Building Type

Pre-Rinse Spray Valve Electric Savings	Annual Energy Savings [kWh]	Peak Demand Savings [kW]
Fast Food	1,956	0.370
Casual Dining	4,565	2.201
Institutional	9,130	1.484
Dormitory	6,848	1.651
School	2,446	1.439

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 5 years. This is consistent with PUCT Docket No. $36779.^{91,96}$

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Baseline Equipment flow-rate

Retrofit Equipment flow-rate

Verify unit is on list of CLEAResult List of qualified measures⁹⁹

Building Type

⁹⁹ The CLEAResult list of qualified measures could not be found.

The Hourly Peak Demand as a percent of the daily flow was estimated by knowing the total daily flow, the hourly flow, and the peak demand period window in Arkansas.

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications. Attachment A: http://interchange.puc.state.tx.us/WebApp/Interchange/Documents/40669_3_735684 .PDF. Accessed 09/09/2013.

PUCT Docket 36779 - Provides EUL for Pre-Rinse Sprayers

Relevant Standards and Reference Sources

CLEAResult maintains a list of qualifying low flow pre-rinse spray valves for direct install.

Document Revision History

Table 2-82: Nonresidential Pre-Rinse Spray Valves History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.4.7 ENERGY STAR[®] Electric Steam Cookers Measure Overview

TRM Measure ID: NR-FS-SC Market Sector: Commercial Measure Category: Cooking Equipment Applicable Building Types: See Table 2-85 Fuels Affected: Electricity Decision/Action Type: Retrofit and New Construction Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Values Savings Methodology: Look-up Tables

Measure Description

This document presents the deemed savings methodology for the installation of Electric Steam Cookers. Steam cookers are available in 3, 4, 5, or 6 pan and larger capacities. ENERGY STAR[®] qualified units are up to 50% more efficient than standard models. They have higher production rates and reduced heat loss due to better insulation and a more efficient steam delivery system. The energy and demand savings are determined on a per-cooker basis.

Eligibility Criteria

Eligible equipment can be found on the ENERGY STAR® list of qualified equipment¹⁰⁰

Baseline Condition

Baseline oven assumptions are default values from the Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment¹⁰¹, assuming the existing equipment is boiler based, Cooking Energy Efficiency is 26%, and Idle Rate in Watts is 1,000W.

High-Efficiency Condition

The high efficiency electric steam cookers are assumed to be ENERGY STAR[®] certified and have the characteristics shown in Table 2-83.

http://www.energystar.gov/ia/products/prod_lists/Steamers_prod_list.pdf. Accessed 09/09/2013. ¹⁰¹ ENERGY STAR[®]. Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment.

¹⁰⁰ ENERGY STAR[®] Qualified Commercial Steam Cookers. List Posted on May 15th, 2012.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment _calculator.xlsx. Accessed 09/09/2013.

Pan Capacity	Cooking Energy Efficiency	Idle Rate [W]
3-Pan	50%	400
4-Pan	50%	530
5-Pan	50%	670
6-Pan and Larger	50%	800

Table 2-83: High-Efficiency Assumptions for Electric Steam Cookers¹⁰²

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

ENERGY STAR[®] "Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment" was used to determine the annual energy consumption of both the baseline and energy efficient electric steam cooker. The ENERGY STAR[®] calculator default values assume equipment is operating 12 hours a day, 365 days a year. In an effort to account for variations in operation of different facility kitchens, ENERGY STAR[®] calculator inputs for equipment operating hours and annual days of operation were assumed based on the facility types shown in

Table 2-85. Additionally, the ENERGY STAR[®] calculator assumes the amount of food cooked per day by a steam cooker is 100 pounds for a 3 pan cooker; therefore, to allow for different numbers of pans and equipment operating hours, a percent of rated production capacity was calculated using the ENERGY STAR[®] default values in equation (1). Equation (2) was used to calculate the amount of food cooked per day.

$$Energy [kWh] = kWh_{base} - kWh_{post}$$

Equation 68

$$Peak \ Demand \ [kW] = \frac{\Delta kWh}{t_{hrs} \times t_{days}} \times CF$$

Equation 69

$$\eta_{PC} = \frac{W_{defaultFood}}{C_{CapAvg} \times t_{defaultHrs}} = \frac{100 \left[\frac{lbs}{day}\right] \times \frac{1}{3} \left[\frac{1}{pan}\right]}{\frac{23.3 + 16.7}{2} \left[\frac{lb}{hr pan}\right] \times 12 \left[\frac{hr}{day}\right]} = 13.9\%$$

Equation 70

$$W_{food} = C_{pan} \times t_{OpHrs} \times N_{pan} \times \eta_{PC}$$

Equation 71

Where:

¹⁰² ENERGY STAR[®]. "Commercial Steam Cookers Key Product Criteria." Accessed 9/26/11. http://www.energystar.gov/index.cfm?c=steamcookerspr_crit_steamcookers.

kWh _{base}	=	Annual energy consumption of baseline equipment using FSTC default values
kWh _{post}	=	Annual energy consumption of energy efficient equipment using FSTC default values.
N _{pre}	=	Number of preheats per day
T _{pre}	=	Length of each preheat [min]
E _{prerate}	=	Preheat energy rate [W]
<i>W</i> _{food}	=	Pounds of food cooked per day [lb/day]
E_{food}	=	ASTM energy to food [Wh/lb]
η	=	Cooking energy efficiency
η_{tSteam}	=	Percent of time in constant steam mode [%]
E _{IdleRate}	=	Idle anarow rate [14/]
		Idle energy rate [W]
C _{pan}	=	Production capacity per pan [lb/hr]
C _{pan} N _{pan}	=	
		Production capacity per pan [lb/hr]
N _{pan}	=	Production capacity per pan [lb/hr] Number of pans

Parameter	Baseline Value	Post Retrofit Value
kWh _{base} kWh _{post} W _{food}	See Table 2-85	
N _{pre}	1	1
T _{pre}	15	15
E _{PreRate}	6,000	6,000
E _{food}	30.8	30.8
η	26%	50%
η _{tSteam}	40%	40%
EldleRate	1,000	3-Pan: 400 4-Pan: 530 5-Pan: 670 6-Pan: 800
C _{pan}	23.3	16.7
N _{pan}	Equal to post equipment value	3, 4, 5, or 6
t _{OpHours}	Fast Food 6am-Midnight: 16 Fast Food 24hr: 20 Casual Dining 3pm-11pm: 6 Casual Dining 11am-11pm: 10 Casual Dining 24hr: 20 Institutional: 8 School: 4	
N _{OpDays}	Fast Food 6am-Midnight: 360 Fast Food 24hr: 360 Casual Dining 3pm-11pm: 312 Casual Dining 11am-11pm: 312 Casual Dining 24hr: 360 Institutional: 365 School: 180	
η _{PC}	13.9%	
CF	Fast Food 6am-Midnight: 0.92 Fast Food 24hr: 0.92 Casual Dining 3pm-11pm: 0.92 Casual Dining 11am-11pm: 0.92 Casual Dining 24hr: 0.92 Institutional: 0.92 School: 0.32	

Table 2-84: Deemed Variables for Energy and Demand Savings Calculations¹⁰³

¹⁰³ ENERGY STAR[®]. "Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment." Accessed 9/26/11. Equipment specifications from 2009 Food Service Technology Center (FSTC) research on available models. Equipment cost from 2010 EPA research on available models using AutoQuotes. http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/commercial kitchen equipment calculator.xls.

Facility Description	N _{pan}	W _{food}	kWh _{base}	kWh _{Post}
Fast Food 6am-Midnight	3-Pan	111	25,219	10,186
	4-Pan	149	32,449	13,403
	5-Pan	186	39,657	16,637
	6-Pan and Larger	223	46,864	19,843
Fast Food 24 hr	3-Pan	139	31,483	12,633
	4-Pan	186	40,534	16,660
	5-Pan	232	49,562	20,711
	6-Pan and Larger	279	58,613	24,738
Casual Dining 3pm-11pm	3-Pan	42	8,305	3,535
	4-Pan	56	10,597	4,554
	5-Pan	70	12,888	5,582
	6-Pan and Larger	84	15,179	6,601
Casual Dining 11am-11pm	3-Pan	70	13,734	5,656
	4-Pan	93	17,603	7,377
	5-Pan	116	21,472	9,113
	6-Pan and Larger	139	25,341	10,834
Casual Dining 24 hr	3-Pan	139	31,483	12,663
	4-Pan	186	40,534	16,660
	5-Pan	232	49,562	20,711
	6-Pan and Larger	279	58,613	24,738
Institutional	3-Pan	56	12,891	5,376
	4-Pan	74	16,483	6,973
	5-Pan	93	20,098	8,596
	6-Pan and Larger	111	23,689	10,193
School	3-Pan	28	3,226	1,427
	4-Pan	37	4,086	1,810
	5-Pan	46	4,947	2,196
	6-Pan and Larger	56	5,280	2.585

Table 2-85: Annual Energy Consumption and Daily Food Cooked by Building Type¹⁰⁴

¹⁰⁴ The pre- and post- energy values are calculated using the ENERGY STAR[®] calculator and the inputs from Table 2-84 and

Table 2-85.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment _calculator.xlsx.

Deemed Energy and Demand Savings Tables

The energy and demand savings of High Efficiency Steam Cookers are deemed values. The following tables provide these deemed values.

Facility Description	Pan Capacity	Annual Energy Savings [kWh]	Peak Demand Savings [kW]
Fast Food 6am-Midnight	3-Pan	15,033	2.464
	4-Pan	19,046	3.121
	5-Pan	23,020	3.614
	6-Pan and Larger	27,021	4.271
Fast Food 24 hr	3-Pan	18,850	2.464
	4-Pan	23,874	3.121
	5-Pan	28,851	3.614
	6-Pan and Larger	33,875	4.271
Casual Dining 3pm-11pm	3-Pan	4,770	2.300
	4-Pan	6,043	2.957
	5-Pan	7,306	3.614
	6-Pan and Larger	8,578	4.271
Casual Dining 11am-11pm	3-Pan	8,078	2.300
	4-Pan	10,226	2.957
	5-Pan	12,359	3.614
	6-Pan and Larger	14,507	4.271
Casual Dining 24 hr	3-Pan	18,850	2.464
	4-Pan	23,874	3.121
	5-Pan	28,851	3.614
	6-Pan and Larger	33,875	4.271
Institutional	3-Pan	7,515	2.300
	4-Pan	9,510	2.957
	5-Pan	11,502	3.614
	6-Pan and Larger	13,496	4.271
School	3-Pan	1,799	0.817
	4-Pan	2,276	1.021
	5-Pan	2,751	1.226
	6-Pan and Larger	3,235	1.430

Table 2-86: Deemed Energy and Demand Savings Values by Building Type

Measure Life and Lifetime Savings.

The EUL has been defined for this measure as 10 years, consistent with PUCT approved Texas EUL filing (Docket No. 36779).

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Facility Type

Manufacturer and Model number

Number of Pans

Verification of ENERGY STAR® certification

For different facility types, the methodology presented in this template can be followed, provided additional parameters are collected and documented:

Annual days of equipment operation

Equipment operating hours per days

Amount of food cooked per day

Coincidence Factor

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications

PUCT Docket 36770 – EUL Assumptions for Commercial Steam Cookers

Relevant Standards and Reference Sources

ENERGY STAR® specifications for Commercial Steam Cookers. http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup &pgw_code=COC. Accessed 09/09/2013

Document Revision History

Table 2-87: Nonresidential High-Efficiency Commercial Steam Cookers History

Version Date Description of Change

1	11/25/2013	TRM V1 origin	
---	------------	---------------	--

2.5 NONRESIDENTIAL: REFRIGERATION

2.5.1 Door Heater Controls Measure Overview

TRM Measure ID: NR-RF-DC

Market Sector: Commercial

Measure Category: Refrigeration

Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores.

Fuels Affected: Electricity
Decision/Action Type: Retrofit
Program Delivery Type: Prescriptive
Deemed Savings Type: Deemed Savings Values

Savings Methodology: Look-up Tables

Measure Description

This document presents the deemed savings methodology for the installation of Door Heater Controls for glass-door refrigerated cases with anti-sweat heaters (ASH). A door heater controller senses dew point (DP) temperature in the store and modules power supplied to the heaters accordingly. DP inside a building is primarily dependent on the moisture content of outdoor ambient air. Because the outdoor DP varies between climate zones, weather data from each climate zone must be analyzed to obtain a DP profile. The reduced heating results in a reduced cooling load. The savings are on a per-linear foot of heater basis.

Eligibility Criteria

N/A

Baseline Condition

Baseline efficiency case is a cooler or a freezer door heater that operates 8,760 hours per year without any controls.

High-Efficiency Condition

Eligible high efficiency equipment is a cooler or a freezer door heater connected to a heater control system, which controls the door heaters by measuring the ambient humidity and temperature of the store, calculating the dew point (DP) temperature, and using pulse width modulation to control the anti-sweat door heater based on specific algorithms for freezer and cooler doors.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The energy savings from the installation of Anti-Sweat heater controls are a result from both the decrease in length of time the heater is running (kWh_{ASH}) and the reduction in load on the refrigeration (kWh_{refrig}) . These savings are calculated using the following procedures:

Indoor dew point (t_{d-in}) can be calculated from outdoor dew point (t_{d-out}) using the following equation:

$$t_{d-in} = 0.005379 \times t_{d-out}^2 + 0.171795 \times t_{d-out} + 19.87006$$

Equation 72

The baseline assumes door heats are running on 8,760 operation. In the post-retrofit case, the duty for each hourly reading is calculated by assuming a linear relationship between indoor DP and duty cycle for each bin reading. It is assumed that the door heaters will be all off (duty cycle of 0%) at 42.89°F DP and all on (duty cycle of 100%) at 52.87°F for a typical supermarket. Between these values, the door heaters' duty cycle changes proportionally:

Door Heater ON% =

$$\frac{t_{d-in} - All \, OFF \, setpt \, (42.89^\circ F)}{All \, ON \, setpt \, (52.87^\circ F) - All \, OFF \, setpt \, (42.89^\circ F)}$$

Equation 73

The controller only changes the run-time of the heaters so the instantaneous door heater power (kW_{ASH}) as a resistive load remains constant per linear foot of door heater at:

$$kW_{ASH} = \frac{115V \times 0.37 \left(\frac{A}{ft}\right)}{1000} \times Linear \, ft \, of \, door \, heater$$
$$= 0.04255 \left(\frac{kW}{ft}\right) \times ft \, of \, door \, heater$$

Equation 74

Door heater energy consumption for each hour of the year is a product of power and run-time:

 $kWh_{ASH-Hourly} = kW_{ASH} \times Door Heater ON\% \times 1Hour$

Equation 75

$$kWh_{ASH} = \sum kWh_{ASH-Hourly}$$

Equation 76

To calculate energy savings from the reduced refrigeration load using average system efficiency and assuming that 35% of the anti-sweat heat becomes a load on the refrigeration system¹⁰⁵, the cooling load contribution from door heaters can be given by:

$$Q_{ASH}(ton - hrs) = 0.35 \times kW_{ASH} \times \frac{3413 \frac{Btu}{hr}}{12000 \frac{Btu}{ton}} \times Door \ Heater \ ON\%$$

Equation 77

The compressor power requirements are based on calculated cooling load and energy-efficiency ratios obtained from manufacturers' data. The compressor analysis is limited to the cooling load imposed by the door heaters, not the total cooling load of the refrigeration system.

For medium temperature refrigerated cases, the saturated condensing temperature (SCT) is calculated as the design dry-bulb temperature plus 15 degrees. For low temperature refrigerated cases, the SCT is the design dry-bulb temperature plus 10 degrees. The EER for both medium-and low-temperature applications is a function of SCT and part load ratio (PLR) of the compressor. PLR is the ratio of total cooling load to compressor capacity, and is assumed to be a constant 0.87¹⁰⁶.

For medium temperature compressors, the following equation is used to determine the EER_{MT} [Btu/hr/watts]. These values are shown in Table 2-88:

$$EER_{MT} = a + (b \times SCT) + (c \times PLR) + (d \times SCT^{2}) + (e \times PLR^{2}) + (f \times SCT \times PLR) + (g \times SCT^{3}) + (h \times PLR^{3}) + (i \times SCT \times PLR^{2}) + (j \times SCT^{2} \times PLR)$$

Equation 78

Where:

а	=	3.75346018700468
b	=	-0.049642253137389
С	=	29.4589834935596
d	=	0.000342066982768282
е	=	-11.7705583766926
f	=	-0.212941092717051
g	=	-1.46606221890819 x 10 ⁻⁶

¹⁰⁵ A Study of Energy Efficient Solutions for Anti-Sweat Heaters. Southern California Edison RTTC. December 1999.

¹⁰⁶ Work Paper PGEREF108: Anti-Sweat Heat (ASH) Controls. Pacific Gas & Electric Company. May 29,2009.

h	=	6.80170133906075
1	=	-0.020187240339536
j	=	0.000657941213335828
PLR	=	0.87
SCT	=	ambient design temperature+ 15

For low temperature compressors, the following equation is used to determine the EER_{LT} [Btu/hr/watts]:

$$EER_{LT} = a + (b \times SCT) + (c \times PLR) + (d \times SCT^{2}) + (e \times PLR^{2}) + (f \times SCT \times PLR) + (g \times SCT^{3}) + (h \times PLR^{3}) + (i \times SCT \times PLR^{2}) + (j \times SCT^{2} \times PLR)$$

Equation 79

Where:

а	=	9.86650982829017
b	=	-0.230356886617629
С	=	22.905553824974
d	=	0.00218892905109218
е	=	-2.4886737934442
f	=	-0.248051519588758
g	=	-7.57495453950879 x 10 ⁻⁶
h	=	2.03606248623924
i	=	-0.0214774331896676
j	=	0.000938305518020252
PLR	=	0.87
SCT	=	ambient design temperature+10

Climate Region Summer Design Dry Bulb Temp ¹⁰⁷		SCT _{MT}	SCT _{LT}	EER _{MT}	EER _{LT}
Amarillo	96	111	106	6.44	4.98
Dallas-Ft. Worth	100	115	110	6.05	4.67
El Paso	101	116	111	5.95	4.59
Houston	96	111	106	6.44	4.98
McAllen	100	115	110	6.05	4.67

Table 2-88:	Values	Based	on Cl	limate	Region	City
-------------	--------	-------	-------	--------	--------	------

Energy used by the compressor to remove heat imposed by the door heaters for each hourly reading is determined based on calculated cooling load and EER, as outlined below:

$$kWh_{refrig-hourly} = Q_{ASH} \times \frac{12}{EER}$$

Equation 80

$$kWh_{refrig} = \sum kWh_{refrig-Hourly}$$

Equation 81

Total annual energy consumption (direct door heaters and indirect refrigeration) is the sum of all hourly reading values:

$$kWh_{total} = kWh_{refrig} + kWh_{ASH}$$

Equation 82

Total energy savings is a result of the baseline and post-retrofit case:

Annual Energy Savings $[kWh] = kWh_{total-baseline} + kWh_{total-post}$ Equation 83

While there might be instantaneous demand savings as a result of the cycling of the door heaters, peak demand savings will only be due to the reduced refrigeration load. Peak demand savings is calculated by the following equation:

$$Peak \ Demand \ Savings = \frac{kWh_{refrig-baseline} - kWh_{refrig-post}}{8760}$$

Equation 84

Deemed Energy and Demand Savings Tables

The energy and demand savings of Anti-Sweat Door Heater Controls are deemed values based on city and refrigeration temperature. The following table provides these deemed values.

¹⁰⁷ ASHRAE Climatic Region Data, 0.5% (°F).

Medium Temperature Low Temperature **Pre-Rinse Sprav** Annual Energy Valve Electric Annual Energy Peak Demand Peak Demand Savings Savings Savings [kW/ft] Savings [kWh/ft] Savings [kW/ft] [kWh/ft] Amarillo 357 0.006 373 0.008 Dallas 243 0.005 255 0.006 El Paso 395 0.008 415 0.010 Houston 176 0.003 184 0.004

0.003

140

0.003

Table 2-89: Deemed Energy and Demand Savings Values by Location and RefrigerationTemperature in kWh per Linear Foot of Heater

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 12 years per the PUCT approved Texas EUL filing (Docket No. 36779). It is also consistent with the DEER database¹⁰⁸.

Additional Calculators and Tools

N/A

McAllen

Program Tracking Data & Evaluation Requirements

134

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Regional Climate Zone

Refrigeration Temperature

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications. Attachment A: http://interchange.puc.state.tx.us/WebApp/Interchange/Documents/40669_3_735684
.PDF. Accessed 08/08/2013. http://interchange.puc.state.tx.us/WebApp/Interchange/Documents/40669_7_736775
.PDF. Accessed 08/08/2013.

PUCT Docket 36779 – Provides EUL for Anti-Sweat Heater Controls

¹⁰⁸ California's Database for Energy Efficient Resources (DEER 2008).

Relevant Standards and Reference Sources

N/A

Document Revision History

Table 2-90: Nonresidential Door Heater Controls History

Version	Date	Description of Change
1 11/25/2013		TRM V1 origin

2.5.2 ECM Evaporator Fan Motor Measure Overview

TRM Measure ID: NR-RF-FM
Market Sector: Commercial
Measure Category: Refrigeration
Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores
Fuels Affected: Electricity
Decision/Action Type: Retrofit
Program Delivery Type: Prescriptive
Deemed Savings Type: Deemed Savings Calculation
Savings Methodology: Algorithm

Measure Description

This document presents the deemed savings methodology for the installation of an Electronically Commutated Motor (ECM) in cooler and freezer display cases replacing existing evaporator fan motors. ECMs can reduce fan energy use up to approximately 65%, and can also provide higher efficiency, automatic variable-speed drive, lower motor operating temperatures, and less maintenance.

Eligibility Criteria

All ECMs must constitute suitable, size-for-size replacements of evaporator fan motors.

Baseline Condition

Baseline efficiency case is an existing shaded pole evaporator fan motor in a refrigerated case.

High-Efficiency Condition

Eligible high efficiency equipment is an electronically commutated motor which replaces an existing evaporator fan motor.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The energy savings from the installation of ECMs are a result of savings due to the increased efficiency of the fan, and reduction of heat produced from the reduction of fan operation. The energy and demand savings are calculated using the following equations:

 $Energy [kWh] = \Delta kWh_{fan} + \Delta kWh_{heat}$

Equation 85

$$\Delta kWh_{fan} = kW_{fan} \times LRF \times Hours$$

Equation 86

$$\Delta kWh_{heat} = \Delta kWh_{fan} \times 0.28 \times Eff$$

Equation 87

Peak Demand
$$[kW] = \frac{\Delta kWh}{Hours}$$

Equation 88

Where:

∆kWh _{fan}	=	Energy savings due to increased efficiency of evaporator fan motor	
∆kWh _{heat}	=	Energy savings due to reduced heat from evaporator fan	
kW _{fan}	=	Power demand of evaporator fan calculated from equipment nameplate data and estimated 0.55 power adjustment/factor ¹⁰⁹	
		$kW_{fan} = \frac{RatedPower}{MotorEfficiency} \times 0.55$	
LRF	=	Load reduction factor for motor replacement	
Hours	=	Annual operating hours, depending on whether or not the evaporator fan has controls	
0.28	=	Conversion factor between kW and tons: 3413 Btuh/kW divided by 12,000 Btuh/ton	
Eff	=	Estimated efficiency based on climate and refrigeration type (medium temperature or low temperature)	

¹⁰⁹ Conservative value based on 15 years of National Resource Management's (NRM) field observations and experience.

Variable	Deemed Values	
LRF	65% ¹¹⁰	
Hours111Evaporator Fans with Controls: 4,030Evaporator Fans without Controls: 8,760		
Eff _{MT} ¹¹²	Amarillo: 1.86 Dallas-Ft. Worth: 1.98 El Paso: 2.02 Houston: 1.86 McAllen: 1.98	
Eff _{LT} ¹¹²	Amarillo: 2.41 Dallas-Ft. Worth: 2.57 El Paso: 2.61 Houston: 2.41 McAllen: 2.57	

Table 2-91: Deemed Variables for Energy and Demand Savings Calculations

Deemed Energy and Demand Savings Tables

The energy and demand savings of ECMs are calculated using a deemed algorithm, based on city, refrigeration temperature, and whether or not the motors have controls. Evaporator fan nameplate data is also required; rated power and efficiency.

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 15 years.¹¹³

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

¹¹⁰ Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid by RLW Analytics, March 23, 2007; the value is supported by National Resource Management (NRM) based on several pre-and post-meter readings of installations.

¹¹¹ The value is an estimate by National Resource Management (NRM) based on extensive analysis of hourly use data. These values are also supported by Select Energy (2004). Cooler Control Measure Impact Spreadsheet User's Manual. Prepared for NSTAR.

¹¹² Southern California Edison, Anti-Sweat Heat (ASH) Controls Work Paper WPSCNRRN009 (rev.o.2007).

¹¹³ ERS (2005). Measure Life Study. Prepared for The MA Joint Utilities; 15-year measure life for retrofit motor installations.

Regional Climate Zone

Building Type

Motor Efficiency

Motor Power Rating

Evaporator Fan Control Type

Refrigeration Temperature

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications

Relevant Standards and Reference Sources

N/A

Document Revision History

Table 2-92: Nonresidential ECM Evaporator Fan Motors History

Version	Date	Description of Change
1	11/25/2013	TRM V1.0 origin

2.5.3 Electronic Defrost Controls Measure Overview

TRM Measure ID: NR-RF-DF

Market Sector: Commercial

Measure Category: Refrigeration

Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores

Fuels Affected: Electricity

Decision/Action Type: Retrofit

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed Savings Calculation

Savings Methodology: Algorithm, Engineering estimates

Measure Description

This document presents the deemed savings methodology for the installation of electronic defrost controls. The controls sense whether or not a defrost cycle is required in a refrigerated case, and skips it if it is unnecessary.

Eligibility Criteria

N/A

Baseline Condition

The baseline efficiency case is an evaporator fan defrost system that uses a time clock mechanism to initiate electronic resistance defrost.

High-Efficiency Condition

Eligible high efficiency equipment is an evaporator fan defrost system with electronic defrost controls.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The energy savings from the installation of electronic defrost controls are a result of savings due to the increase in operating efficiency and the reduced heat from a reduction in number of defrosts. The energy and demand savings are calculated using the following equations:

$$Energy [kWh] = \Delta kWh_{defrost} + \Delta kWh_{heat}$$

Equation 89

$\Delta kWh_{defrost} = kW_{defrost} \times DRF \times Hours$	
	Equation 90

$$\Delta kWh_{heat} = \Delta kWh_{defrost} \times 0.28 \times Eff$$

Equation 91

Peak Demand
$$[kW] = \frac{\Delta kWh}{Hours}$$

Equation 92

Where:

∆kWh _{defrost}	=	Energy savings resulting from an increase in operating efficiency due to the addition of electronic defrost controls
Δ kWh _{heat}	=	Energy savings due to the reduced heat from reduced number of defrosts
<i>kW_{defrost}</i>	=	Load of electric defrost
Hours	=	Number of hours defrost occurs over a year without defrost controls
DRF	=	Defrost reduction factor – percent reduction in defrosts required per year
0.28	=	Conversion of kW to tons; 3,413 Btuh/kW divided by 12,000 Btuh/ton
Eff	=	Estimated efficiency based on climate & refrigeration type

Variable	Deemed Values
DRF ¹¹⁴	35%
Eff _{MT} ¹¹⁵	Amarillo: 1.86 Dallas-Ft. Worth: 1.98 El Paso: 2.02 Houston: 1.86 McAllen: 1.98
Eff _{LT} ¹¹²	Amarillo: 2.41 Dallas-Ft. Worth: 2.57 El Paso: 2.61 Houston: 2.41 McAllen: 2.57

Table 2-93: Deemed Variables for Energy and Demand Savings Calculations

Deemed Energy and Demand Savings Tables

N/A

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 10 years.¹¹⁶

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Hours that defrost occurs over a year without defrost controls

Load of electric defrost

Refrigeration Temperature (Low Temperature or Medium Temperature)

Climate Zone (Amarillo, Dallas-Fort Worth, El Paso, Houston, or McAllen)

¹¹⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; supported by 3rd party evaluation: Independent Testing was performed by Intertek Testing Service on a Walk-in Freezer that was retrofitted with Smart Electric Defrost capability.

¹¹⁵ Southern California Edison, Anti-Sweat Heat (ASH) Controls Work Paper WPSCNRRN009 (rev.o.2007).

¹¹⁶ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities.

References and Efficiency Standards

Petitions and Rulings

PUCT Docket No. 40669 provides energy and demand savings and measure specifications

Relevant Standards and Reference Sources

There are no relevant state or federal codes and standards that affect this measure.

Document Revision History

Table 2-94: Nonresidential Electronic Defrost Controls History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.5.4 Evaporator Fan Controls Measure Overview

TRM Measure ID: NR-RF-FC

Market Sector: Commercial

Measure Category: Refrigeration

Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores

Fuels Affected: Electricity

Decision/Action Type: Retrofit

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed Savings Calculation

Savings Methodology: Algorithm

Measure Description

This document presents the deemed savings methodology for the installation of evaporator fan controls. As walk-in cooler and freezer evaporators often run continuously, this measure consists of a control system that turns the fan on only when the unit's thermostat is calling for the compressor to operate.

Eligibility Criteria

N/A

Baseline Condition

Baseline efficiency case is an existing shaded pole evaporator fan motor with no temperature controls, running 8,760 annual hours.

High-Efficiency Condition

Eligible high efficiency equipment will be regarded as an energy management system (EMS) or other electronic controls to modulate evaporator fan operation based on temperature of the refrigerated space.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The energy savings from the installation of evaporator fan controls are a result of savings due to the reduction in operation of the fan. The energy and demand savings are calculated using the following equations:

Equation 93

Peak Demand [kW] =

$$((kW_{evap} \times n_{fans}) - kW_{circ}) \times (1 - DC_{comp}) \times DC_{evap} \times BF$$

Equation 94

Where:

kW _{evap}	=	Connected load kW of each evaporator fan
<i>kW_{circ}</i>	=	Connected load kW of the circulating fan
N _{fans}	=	Number of evaporator fans
DC_{comp}	=	Duty cycle of the compressor
<i>DC</i> _{evap}	=	Duty cycle of the evaporator fan
BF	=	Bonus factor for reducing cooling load from replacing the evaporator fan with a lower wattage circulating fan when the compressor is not running
8760	=	Annual hours per year

Variable	Deemed Values
kW _{evap} ¹¹⁷	0.123 kW
kW _{circ} ¹¹⁸	0.035 kW
DC _{comp} ¹¹⁹	50%
DC _{evap} ¹²⁰	Cooler: 100% Freezer: 94%
BF ¹²¹	Low Temp: 1.5 Medium Temp: 1.3 High Temp: 1.2

Table 2-95: Deemed Variables for Energy and Demand Savings Calculations

Deemed Energy and Demand Savings Tables

N/A

Measure Life and Lifetime Savings.

The EUL has been defined for this measure as 16 years per the PUCT approved Texas EUL filing (Docket No. 36779). This is consistent with the DEER database.¹²²

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Number of evaporator fans controlled

Refrigeration Type

¹¹⁷ Based on an a weighted average of 80% shaded pole motors at 132 watts and 20% PSC motors at 88 watts.

¹¹⁸ Wattage of fan used by Freeaire and Cooltrol.

¹¹⁹ A 50% duty cycle is assumed based on examination of duty cycle assumptions from Richard Traverse (35%-65%), Control (35%-65%), Natural Cool (70%), Pacific Gas & Electric (58%). Also, manufacturers typically size equipment with a built-in 67% duty factor and contractors typically add another 25% safety factor, which results in a 50% overall duty factor.

¹²⁰ An evaporator fan in a cooler runs all the time, but a freezer only runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day).

¹²¹ Bonus factor (1+ 1/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F.

¹²² California's Database for Energy Efficiency Resources (DEER 2008).

Refrigeration Temperature

References and Efficiency Standards

Petitions and Rulings

PUCT Docket No. 40669 provides energy and demand savings and measure specifications

PUCT Docket No. 36779 provides approved EUL for Evaporator Fan Controls

Relevant Standards and Reference Sources

N/A

Document Revision History

Table 2-96: Nonresidential Evaporator Fan Controls History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.5.5 Night Covers for Open Refrigerated Display Cases Measure Overview

TRM Measure ID: NR-RF-RC

Market Sector: Commercial

Measure Category: Refrigeration

Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores

 Fuels Affected: Electricity

 Decision/Action Type: Retrofit

 Program Delivery Type: Prescriptive

 Deemed Savings Type: Deemed Savings Value (per linear ft of case)

 Savings Methodology: Look-up Tables

Measure Description

This document presents the deemed savings methodology for the installation of night covers on otherwise open vertical (multi-deck) and horizontal (or coffin-type) low-temperature and medium-temperature display cases to decrease cooling load of the case during the night. It is recommended that these film-type covers have small, perforated holes to decrease the build-up of moisture.

Eligibility Criteria

Any suitable material sold as a night cover.

Baseline

Baseline efficiency case is an open low-temperature or medium-temperature refrigerated display case (vertical or horizontal) that is not equipped with a night cover.

High-Efficiency Condition

Eligible high efficiency equipment is considered any suitable material sold as a night cover. The cover must be applied for a period of at least 6 hours per night. Vertical strip curtains may be in use 24 hours per day.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The following outlines the assumptions and approach used to estimate demand and energy savings due to installation of night covers on open low- and medium-temperature, vertical and horizontal, display cases. Heat transfer components of the display case include infiltration (convection), transmission (conduction), and radiation. This work paper assumes that installing night covers on open display cases will only reduce the infiltration load on the case. Infiltration affects cooling load in the following ways:

- Infiltration accounts for approximately 80% of the total cooling load of open vertical (or multi-deck) display cases.¹²³
- Infiltration accounts for approximately 24% of the total cooling load of open horizontal (coffin or tub style) display cases.¹²³

Installing night covers for a period of 6 hours per night can reduce the cooling load due to infiltration by:

- 8% on vertical cases¹²³
- 50% on horizontal cases¹²⁴

The energy savings due to the reduced infiltration load when night covers are installed will vary based on outdoor temperature and climate zone. As a result the energy savings must be determined for each climate zone and typical outdoor temperatures when the covers are applied.

Once the infiltration load for each type of case was determined, the following steps were followed to determine the compressor power requirements and energy savings. It is important to reiterate that heat transfer in display cases occurs due to convection, conduction, and radiation. The analysis presented here is limited to the cooling load imposed by convection (infiltration) only and not the total cooling load of a particulate display case.

1. In the base case it is assumed that no night covers are installed on the cases and the infiltration cooling load for each bin can be given by:

 $Q_{baselineInfiltration}[ton - hours] = \frac{Q_{baselineInfiltration}[Btuh] \times Bin - hours}{12,000 \left[\frac{Btu}{ton}\right]}$

Equation 95

¹²³ ASHRAE 2006. Refrigeration Handbook. Retail Food Store Refrigeration and Equipment. Atlanta, Georgia. p. 46.1, p. 46.5, p. 46.10.

 ¹²⁴ 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study. 2005. Run ID D03- 205.
 The EM&V team, Inc. p. 7-74 and 7-75. DEER.

The compressor power requirements are based on calculated cooling load and energyefficiency ratios (EER) obtained from manufacturers' data.

2. Determine the saturated condensing temperature (SCT)

For Medium Temperature (MT): $SCT = DB_{adj} + 15$

Equation 96

For Low Temperature (LT):
$$SCT = DB_{adj} + 10$$

Equation 97

Where:

DB_{adj} = Design dry-bulb temperature (°F), based on climate zone, of ambient or space where the compressor/condensing units reside. Table 2-97 below lists design dry-bulb temperatures by climate zone.

Table 2-97: Various Climate Zone Design Dry Bulb Temperatures and Representative Cities

Representative Climate Zone	Summer Design Dry Bulb Temperature, ASHRAE Climatic Region Data, 0.5% (ºF) ¹²⁵
Amarillo, TX	96
Dallas-Ft. Worth, TX	100
El Paso, TX	101
Houston, TX	96
McAllen, TX	100

- 3. Determine the EER for both MT and LT applications
 - a. Compressor performance curves were obtained from a review of manufacturer data for reciprocating compressors as a function of SCT, cooling load, and cooling capacity of compressor.¹²⁶
 - b. Part-load ratio (PLR) is the ratio of total cooling load (from Cooling Load Calculation Section) to compressor capacity. It indicates the percentage of compressor capacity needed to remove the total cooling load. It is calculated by the following equation:

$$PLR = \frac{Q_{cooling}}{Q_{capacity}}$$

Equation 98

Where:

¹²⁵ ASHRAE 2009 Handbook Fundamentals.

¹²⁶ Southern California Edison, Anti-Sweat Heat (ASH) Controls Work Paper WPSCNRRN009 (rev.0.2007).

PLR = Part Load Ratio $Q_{cooling} = Cooling Load$ $Q_{capacity} = Total Compressor Capacity^{127}$ $Q_{capacity} = Q_{cooling} \times 1.15$ $PLR = \frac{1}{1.15} = 0.87$

- To simplify the analysis, it is assumed that PLR remains constant for the post-retrofit condition.
 - c. The energy efficiency ratio (EER) is a measure of how efficient a cooling system operates at a particular temperature. It is defined as the ratio of useful energy transfer to the work input. For refrigeration systems it is the ratio of heat removed by the compressor (Btu/h) to the input power (Watts). The higher the EER the greater the efficiency of the system.
- For medium temperature compressors, the following equation is used to determine the EER_{MT} (Btu/hr/watts). The equation uses SCT (from step 2), and a PLR of 0.87 (from step 3b).

$$EER_{MT} = a + (b \times SCT) + (c \times PLR) + (d \times SCT^{2}) + (e \times PLR^{2}) + (f \times SCT \times PLR) + (g \times SCT^{3}) + (h \times PLR^{3}) + (i \times SCT \times PLR^{2}) + (j \times SCT^{2} \times PLR)$$

Equation 99

Where:

а	=	3.75346018700468
b	=	-0.049642253137389
С	=	29.4589834935596
d	=	0.000342066982768282
е	=	-11.7705583766926
f	=	-0.212941092717051
g	=	-1.46606221890819E-06
h	=	6.80170133906075
i	=	-0.020187240339536
j	=	0.000657941213335828

¹²⁷ Compressor capacity is determined by multiplying baseline cooling load by a compressor over-sizing factor of 15%. d. For low temperature compressors, the following equation is used to determine the EER_{LT} (Btu/hr/watts). The equation uses SCT (from step 2), and a PLR of 0.87 (from step 3b).

EER_{LT}

$$= a + (b \times SCT) + (c \times PLR) + (d \times SCT^{2}) + (e \times PLR^{2}) + (f \times SCT \times PLR) + (g \times SCT^{3}) + (h \times PLR^{3}) + (i \times SCT \times PLR^{2}) + (j \times SCT^{2} \times PLR)$$

Equation 100

Where:

а	=	9.86650982829017
b	=	-0.230356886617629
С	=	22.905553824974
d	=	0.00218892905109218
е	=	-2.48866737934442
f	=	-0.248051519588758
g	=	-7.57495453950879E-06
h	=	2.03606248623924
i	=	-0.0214774331896676
j	=	0.000938305518020252

4. Convert EER to kW/ton

$$\frac{kW}{ton} = \frac{12}{EER}$$

Equation 101

5. Energy used by the compressor to remove heat imposed due to infiltration in the base case for each bin reading is determined based on the calculated cooling load and EER, as outlined below.

kWh_{baseline-refrig-bin}

 $= Q_{baseline-infiltration}[ton - hours] \times \frac{kW}{ton}$

Equation 102

6. Total annual baseline refrigeration energy consumption is the sum of all bin values.

$$kWh_{baseline-refrig} = \sum kWh_{baseline-refrig-bin}$$

Equation 103

7. Baseline average peak demand was calculated by the equation:

$$kW_{peakdemand} = MAX\left(\frac{kWh_{baseline-refrig-bin}}{8760}\right)$$

Equation 104

8. In the post retrofit case, it is assumed that night covers are installed on the cases during the nights from midnight to 6:00 AM. During the day the cases are uncovered and the total cooling load for each bin can be given by:

$$\begin{split} & Q_{post-retrofit}[ton - hours] \\ &= \frac{Q_{baseline-infiltration} \left[Btuh\right] \times Daytime_{bin-hrs}}{12,000 \left[\frac{Btuh}{ton}\right]} \\ &+ \frac{(Q_{baseline-infiltration} \left[Btuh\right] - Q_{reduced-infiltration} \left[Btuh\right]) \times Nighttime_{bin-hrs}}{12,000 \left[\frac{Btuh}{ton}\right]} \end{split}$$

Equation 105

Steps 2 through 7 are repeated in the post-retrofit case to calculate the post retrofit energy and demand usage.

9. The energy savings were determined as the difference between the baseline energy use and post-retrofit energy use:

$$\Delta kWh_{total} = kWh_{totalBaseline} - kWh_{totalPostRetrofit}$$

Equation 106

10. Once the peak demand for the baseline and post-retrofit case has been determined, the demand savings are calculated by the following equation¹²⁸:

¹²⁸ This information is included in Docket No. 40669; however, peak demand savings should be zero as savings occur at night. Table 2-98 lists energy and demand savings, and it states 0 peak demand savings.

Equation 107

Deemed Energy and Demand Savings Tables

The energy and demand savings of Night Covers are based on PG&E Night Covers Work Paper. PG&E modeled the infiltration load of refrigerator cases without night covers and refrigerators with night covers to derive the energy savings. The PG&E report estimated savings for several climate zones. The climate zone (Amarillo, TX) was chosen to represent the entire state.¹²⁹ The deemed energy and demand savings are shown below.

 Table 2-98: Modeled Deemed Savings for Night Covers for Texas (per Linear Foot)

Measure	Energy Savings [kWh/ft]	Demand Savings [kW/ft]
Night Covers on Vertical Low Temp Cases	45	0
Night Covers on Horizontal Low Temp Cases	23	0
Night Covers on Vertical Medium Temp Cases	35	0
Night Covers on Horizontal Medium Temp Cases	17	0

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 5 years¹³⁰

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Display case type

Refrigeration Temperature

¹²⁹ PUCT Docket No. 40669, page A-2 states that Amarillo, Texas was chosen as a conservative climate zone due to little variation between weather zones. This statement has not been expanded upon.

 ¹³⁰ Night Covers for Open Vertical and Horizontal Display Cases (Low and Medium Temperature Cases), Pacific Gas & Electric Company, May 29, 2009.

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 provides energy and demand savings and measure specifications

Relevant Standards and Reference Sources

N/A

Document Revision History

Table 2-99: Nonresidential Night Covers for Open Refrigerated Display Cases History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.5.6 Solid and Glass Door Reach-Ins Measure Overview

TRM Measure ID: NR-RF-RI

Market Sector: Commercial

Measure Category: Refrigeration

Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores

Fuels Affected: Electricity

Decision/Action Type: Retrofit & New Construction

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed Savings Calculation

Savings Methodology: Algorithm

Measure Description

This document presents the deemed savings methodology for the installation of ENERGY STAR[®] or CEE certified Solid & Glass Reach-in doors for refrigerators and freezers, which are significantly more efficient. The high-efficiency criteria, developed by ENERGY STAR[®] and the Consortium for Energy Efficiency (CEE), relate the volume of the appliance to its daily energy consumption. These reach-in cases have better insulation and higher-efficiency than save energy, over regular refrigerators and freezers. The unit of measurement is volume in cubic feet of the unit. These four most common sized refrigerators and freezers are reported here.

Eligibility Criteria

Sold- or glass-door reach-in refrigerators and freezers must meet CEE or ENERGY STAR[®] minimum efficiency requirements (See Table 2-101).

Baseline Condition

Baseline efficiency case is a regular refrigerator or freezer with anti-sweat heaters on doors that meets federal standards. The baseline daily kWh for solid door and glass door commercial reach-in refrigerators and freezers are shown below in Table 2-100.

Baseline Standards	Refrigerator Daily Consumption [kWh]	Freezer Daily Consumption [kWh]
Solid Door	0.10V + 2.04	0.40V + 1.38
Glass Door	0.12V + 3.34	075V + 4.10

Table 2-100: E	Baseline Energy	Consumption ^{131,132}
----------------	-----------------	--------------------------------

High-Efficiency Condition

Eligible high efficiency equipment for solid- or glass-door reach-in refrigerators and freezers must meet CEE or ENERGY STAR[®] minimum efficiency requirements, as shown in Table 2-101 below:

Efficiency Standards	Refrigerator Daily Consumption [kWh]	Freezer Daily Consumption [kWh]		
	Solid Door			
0 < V < 15	0.089V + 1.411	0.250V + 1.250		
15 ≤ V < 30	0.037V + 2.200	0.400V - 1.000		
30 ≤ V < 50	0.056V + 1.635	0.163V + 6.125		
V ≥ 50	0.060V + 1.416	0.158V + 6.333		
Glass Door				
0 < V < 15	0.118V + 1.382	0.607V + 0.893		
15 ≤ V < 30	0.140V + 1.050	0.733V – 1.000		
30 ≤ V < 50	0.088V + 2.625	0.250V + 13.500		
V ≥ 50	0.110V + 1.500	0.450V + 3.500		

Table 2-101: Efficient Energy Consumption¹³³

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The energy and demand savings of Solid- and Glass-Door Reach-In Refrigerators and Freezers are calculated using values in Table 2-100 and Table 2-101, based on the volume of the units. The savings calculations are found below.

¹³¹ The baseline energy consumption has been estimated by the Foodservice Technology Center (FSTC), based on data of energy consumption of baseline commercial refrigerators compiled by the California Energy Commission.

¹³² V = Interior volume [ft3] of a refrigerator or freezer (as defined in the Association of Home Appliance Manufacturers Standard HRF1-1979).

¹³³ ENERGY STAR[®] Program Requirements for Commercial Refrigerators and Freezers Partner Commitments Version 2.0, U.S. Environmental Protection Agency, Accessed on 7/7/10. http://www.energystar.gov/ia/partners/product_specs/program_reqs/commer_refrig_glass_prog_req.p df

 $Energy [kWh] = (kWh_{base} - kWh_{ee}) \times 365$

Equation 108

Peak Demand
$$[kW] = \frac{\Delta kWh}{8760} \times CF$$

Equation 109

Where:

kWh _{base}	=	Baseline maximum daily energy consumption in kWh, based on volume (V) of unit, found in Table 2-100.
kWh _{ee}	=	Efficient maximum daily energy consumption in kWh, based on volume (V) of unit, found in Table 2-101.
V	=	Chilled or frozen compartment volume [ft ³] (as defined in the Association of Home Appliance Manufacturers Standard HRF-1-1979)
365	=	Days per year
8760	=	Hours per year
CF	=	Summer Peak Coincidence Factor (1.0) ¹³⁴

Deemed Energy and Demand Savings Tables.

N/A

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 12 years, per the PUCT Texas EUL filing (Docket No. 36779). This is consistent with the DEER database¹³⁵.

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Baseline Unit Volume

Baseline Unit Door Type (Solid or Glass)

¹³⁴ The Summer Peak Coincidence Factor is assumed equal to 1.0, since the annual kWh savings is divided by the total annual hours (8760), effectively resulting in the average kW reduction during the peak period.

¹³⁵ DEER 2008, December 2008 Final Report.

Baseline Unit Temperature (Refrigerator or Freezer)

Post-Retrofit Unit Volume

Post-Retrofit Unit Door Type (Solid or Glass)

Post-Retrofit Unit Temperature (Refrigerator or Freezer)

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 provides energy and demand savings and measure specifications

PUCT Docket 36779 provides EUL estimates for Commercial Refrigerators and Freezers

Relevant Standards and Reference Sources

ENERGY STAR® Commercial Refrigerators & Freezers. http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup &pgw_code=CRF. Accessed 08/20/2013

Association of Home Appliance Manufacturers. HRF-1: Household Refrigerators, Combination Refrigerator-Freezers, and Household Freezers

Document Revision History

Table 2-102: Nonresidential Solid and Glass Door Refrigerators and Freezers History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.5.7 Strip Curtains for Walk-In Refrigerated Storage Measure Overview

TRM Measure ID: NR-RF-SC

Market Sector: Commercial

Measure Category: Refrigeration

Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores

Fuels Affected: Electricity
Decision/Action Type: Retrofit & New Construction
Program Delivery Type: Prescriptive
Deemed Savings Type: Deemed Savings Value (per door/opening)
Savings Methodology: M&V analysis

Measure Description

This measure refers to the installation of infiltration barriers (strip curtains or plastic swinging doors) on walk-in coolers or freezers. These units impede heat transfer from adjacent warm and humid spaces into walk-ins when the main door is opened, reducing the cooling load. This results in a reduced compressor run-time, reducing energy consumption. This assumes that a walk-in door is open 2.5 hours per day every day, and strip curtains cover the entire door frame.

Eligibility Criteria

Strip curtains or plastic swinging doors installed on walk-in coolers or freezers.

Baseline Condition

Baseline efficiency case is a refrigerated walk-in space with nothing to impede air flow from the refrigerated space to adjacent warm and humid space when the door is opened.

High-Efficiency Condition

Eligible high efficiency equipment in a polyethylene strip curtain added to the walk-in cooler or freezer. Any suitable material sold as a strip cover for a walk-in unit is eligible as long as it covers the entire doorway.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Savings are derived from an M&V study.

Deemed Energy and Demand Savings Tables

The energy and demand savings for strip curtains are based on the assumption that the walk-in door is open 2.5 hours per day, every day, and the strip curtain covers the entire door frame, and are shown below in Table 2-103.

Table 2-103: De	eemed Energy and D	Demand Savings for	Freezers and Coolers ¹³⁶
-----------------	--------------------	--------------------	-------------------------------------

Savings	Coolers	Freezers
Energy [kWh]	422	2,974
Demand [kW]	0.05	0.35

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 4 years, per the PUCT Texas EUL filing (Docket No. 36779). This is consistent with the DEER database¹³⁷.

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Unit Temperature (Refrigerator or Freezer)

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 provides energy and demand savings and measure specifications

PUCT Docket 36779 provides EUL estimates for Commercial Refrigerators and Freezers

Relevant Standards and Reference Sources

N/A

¹³⁶ Values based on analysis prepared by ADM for FirstEnergy utilities in Pennsylvania, provided by FirstEnergy on June 4th, 2010. Based on a review of deemed savings assumptions and methodologies from Oregon and California.

¹³⁷ DEER 2008, December 2008 Final Report.

Document Revision History

Table 2-104: Nonresidential Walk-In Refrigerator and Freezer Strip Curtains History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.5.8 Zero Energy Doors for Refrigerated Cases Measure Overview

TRM Measure ID: NR-RF-ZE

Market Sector: Commercial

Measure Category: Refrigeration

Applicable Building Types: Any commercial retail facility such as supermarkets, grocery stores, hotels, restaurants and convenience stores

Fuels Affected: Electricity

Decision/Action Type: Retrofit or New Construction

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed Savings Values

Savings Methodology: Engineering estimates

Measure Description

This document presents the deemed savings methodology for the installation of Zero Energy Doors for refrigerated cases. These new zero-energy door designs eliminate the need for antisweat heaters to prevent the formation of condensation on the glass surface by incorporating heat reflective coatings on the glass, gas inserted between the panes, non-metallic spacers to separate glass panes, and/or non-metallic frames.

Eligibility Criteria

This measure cannot be used in conjunction with anti-sweat heat (ASH) controls. It is not eligible to be installed on cases above 0°F.

Baseline Condition

Baseline efficiency case is a standard vertical reach-in refrigerated case with anti-sweat heaters on the glass surface of the doors.

High-Efficiency Condition

Eligible high efficiency equipment is the installation of special doors that eliminate the need for anti-sweat heaters, for low-temperature cases only (below 0 °F). Doors must have either heat reflective treated glass, be gas-filled, or both.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The energy and demand savings from the installation of zero-energy doors are listed below:

 $Energy [kWh] = \Delta kW \times 8760$

Equation 110

Peak Demand $[kW] = kW_{door} \times BF$

Equation 111

Where:

4

kW _{door}	=	Connected load kW of a typical reach-in cooler or freezer door with a heater
BF	=	Bonus factor for reducing cooling load from eliminating heat generated by the door heater from entering the cooler or freezer
8760	=	Hours per year

Table 2-105:	Deemed Variables for Energy and Demand Savings Cal	culations
	Boolinga tanabigo for Energy and Boinana Cathigo Gai	Janationio

Variable	Deemed Values
kW _{door} ¹³⁸	Cooler: 0.075 Freezer: 0.200
BF ¹³⁹	Low-Temp Freezer: 1.3 Medium-Temp Freezer: 1.2 High-Temp Freezer: 1.1

Deemed Energy and Demand Savings Tables

The energy and demand savings of zero-energy doors are listed below in Table 2-106.

¹³⁸ Based on range of wattages from two manufacturers and metered data (cooler 50-130W, freezer 200-320W). Efficiency Vermont Commercial Master Technical Reference Manual No. 2005-37.

¹³⁹ Bonus factor (1+0.65/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and manufacturers assumption that 65% of heat generated by door enters the refrigerated case. Efficiency Vermont Commercial Master Technical Reference Manual No. 2005-37.

Table 2-106: Energy and Demand Deemed Savings¹⁴⁰

Technology Type	Energy Savings [kWh]	Peak Demand Savings [kW]
Low-Temperature Freezer	2,278	0.26
Medium-Temperature Cooler	788	0.09
High-Temperature Cooler	723	0.08

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 12 years per the PUCT approved Texas EUL filing (Docket No. 36779). This is consistent with the DEER database¹⁴¹.

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Refrigeration Temperature

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 provides energy and demand savings and measure specifications

PUCT Docket 36779 provides EUL values for Zero Energy Doors.

Relevant Standards and Reference Sources

N/A

Document Revision History

Table 2-107: Nonresidential Zero-Energy Refrigerated Case Doors History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

¹⁴⁰ PUCT Docket 40669 states that energy savings credit for these doors applies only to low temperature cases (< 0°F), yet it also provides savings for medium-temperature and high-temperature cases.

¹⁴¹ DEER 2008. October 10th, 2008.

2.6 NONRESIDENTIAL: MISCELLANEOUS

2.6.1 Vending Machine Controls Measure Overview

TRM Measure ID: NR-MS-VC Market Sector: Commercial Measure Category: Miscellaneous Applicable Building Types: All building types applicable Fuels Affected: Electricity Decision/Action Type: Retrofit Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Value (per machine) Savings Methodology: M&V

Measure Description

This section presents the deemed savings methodology for the installation of Vending Machine controls to reduce energy usage during periods of inactivity. These controls reduce energy usage by powering down the refrigeration and lighting systems when the control device signals that there is no human activity near the machine. If no activity or sale is detected over the manufacturer's programmed time duration, the device safely de-energizes the compressor, condenser fan, evaporator fan, and any lighting. For refrigerated machines, it will power up occasionally to maintain cooling to meet the machine's thermostat set point. When activity is detected, the system returns to full power. The energy and demand savings are determined on a per-vending machine basis.

Eligibility Criteria

N/A

Baseline Condition

Eligible baseline equipment is a 120 volt single phase vending machine manufactured and purchased prior to August 31, 2012.

High-Efficiency Condition

Eligible equipment is a refrigerated vending machine or non-refrigerated snack machine (including warm beverage machines) without any controls. It is assumed that the display lighting has not been permanently disabled.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Savings were derived from EM&V studies.

Deemed Energy and Demand Savings Tables

Energy and demand savings are deemed values for different sized vending machines. These values have been pieced together from different sources and studies. The energy and demand savings of Vending Machine Controllers are deemed values. The following tables provide these deemed values.

Table 2-108: Deemed Energy and Demand Savings Values by Equipment Type

Size	Annual Energy Savings [kWh]	Peak Demand Savings [kW] ¹⁴²
Control for Refrigerated Cold Drink Unit cans or bottles	1,612 ¹⁴³	0.030
Control for Refrigerated Reach-in Unit any sealed beverage	1,086 ¹⁴⁴	0.035
Control for Non-Refrigerated Snack Unit with lighting (include. Warm beverage)	387 ¹⁴⁵	0.006

Measure Life and Lifetime Savings

The EUL has been defined for this measure as 5 years per the PUCT approved Texas EUL filing (Docket No. 36779).

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

Vending Machine Type

¹⁴² Chappell, C., Hanzawi, E., Bos, W., Brost, M., and Peet, R. (2002). "Does It Keep the Drinks Cold and Reduce Peak Demand? An Evaluation of a Vending Machine Control Program," 2002 ACEEE Summer Study on Energy Efficiency in Buildings Proceedings, pp. 10.47-10.56.

¹⁴³ Pacific Gas and Electric, Work Paper VMCold, Revision 3, August, 2009, Measure Code R97.

¹⁴⁴ Pacific Gas and Electric, Work Paper VMReach, Revision 3, August, 2009, Measure Code R143.

¹⁴⁵ Pacific Gas and Electric, Work Paper VMSnack, Revision 3, August, 2009, Measure Code R98.

Refrigerated Cold Drink Unit, Refrigerated Reach-in Unit, or Non-Refrigerated Snack Unit with lighting

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40669 – Provides energy and demand savings and measure specifications. Appendix A: http://interchange.puc.state.tx.us/WebApp/Interchange/Documents/40669_3_735684 .PDFAccessed 9/24/2013.

PUCT Docket 36779 – Provides EUL for Vending Machine Controls

Relevant Standards and Reference Sources

Chappell, C., Hanzawi, E., Bos, W., Brost, M., and Peet, R. (2002). "Does It Keep the Drinks Cold and Reduce Peak Demand? An Evaluation of a Vending Machine Control Program," 2002 ACEEE Summer Study on Energy Efficiency in Buildings Proceedings, pp. 10.47-10.56. http://www.eceee.org/library/conference_proceedings/ACEEE_buildings/2002/Panel_ 10/p10_5/paper. Accessed 9/24/2013.

Document Revision History

Table 2-109: Nonresidential Vending Machine Controls History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.7 NONRESIDENTIAL: RENEWABLES

2.7.1 Solar Photovoltaic (PV) Measure Overview

TRM Measure ID: NR-RN-PV
Market Sector: Commercial
Measure Category: Renewables
Applicable Building Types: All
Fuels Affected: Electricity
Decision/Action Type: N/A
Program Delivery Type: Prescriptive Rebate
Deemed Savings Type: Deemed Savings Values and Calculation
Savings Methodology: Algorithms, Model-Calculator (PVWatts™)

Measure Description

This section summarizes the savings calculations of the Solar Photovoltaic Standard Offer, Market Transformation, and Pilot programs. These programs are offered by the Texas utilities, with the primary objective to achieve cost-effective reduction in energy savings and peak demand savings. Participation in the Solar Photovoltaic program involves the installation of a solar photovoltaic system. There are two primary methods used to estimate savings. The deemed method uses deemed algorithms, and the M&V method uses a simulation tool: the National Renewable Energy Laboratory's (NREL) PVWatts[™]. Each utility has a minimum and maximum incentivized system size, as shown in Table 2-110, as well as additional eligibility criteria.

Utility	Minimum Incentivized Size [kW] ¹⁴⁶	Maximum Incentivized Size [kW]
Oncor	1 kW	N/A
AEP (all entities)	1 kW	25 kW
El Paso Electric (EPE)	1 kW	50 kW

Table 2-110: Incentivized System Ranges by Utility

Eligibility Criteria

A project will be eligible for rebates under the Solar Photovoltaic programs if the following criteria are met:

Eligible equipment must be new, and used for individually metered commercial buildings. Used, refurbished, and existing solar PV systems are not eligible for incentives.

¹⁴⁶ Minimum size of 1kW may be waived for AEP and EPE in the event that the system is designed for educational use in schools.

System ranges must be met, as described above in Table 2-110.

Solar electric systems must deliver energy to a building's electrical distribution system which is connected to the utility. Portable systems, systems of a temporary nature, and off-grid systems are ineligible.

Other utility specific conditions must also be met:

Oncor:

- Electrical output of the installed solar PV system is limited to 75% of the host customer's demand during summer peak demand. Additionally, annual energy generation should not exceed the customer's annual energy consumption.¹⁴⁷
- A deemed savings approach can only be used for "standard" systems. A standard system, for both residential and nonresidential PV systems, is defined as a system that does not exceed an azimuth angle of +/- 20° of south, and has a tilt angle between 0° (horizontal) and [system latitude + 15°]. The azimuth angle requirement is irrelevant for flat panel systems. Systems that fall outside of these requirements are considered *non-standard* systems, and are required to use a site-specific approach for energy and demand production impacts.

El Paso Electric & AEP¹⁴⁸:

- Modules and Inverters must be new and certified to UL 1741 standards by a Nationally Recognized Testing Laboratory (NRTL). Eligible modules must be warranted for at least 10 years to produce at least 90% of their rated power output, and for at least 20 years to produce at least 80% of their rated power output.
- Energy produced will be monitored by a utility-provided Revenue-Grade Solar (REC) Meter.
- The estimated annual electrical energy output of a solar electric system, as modeled by National Renewable Energy Laboratory's (NREL) PVWatts^{™149} and considering an appropriate factor for shading, must be at least 80% of the estimated annual energy output for an optimally-sited,¹⁵⁰ un-shaded system of the same DC capacity.
- A deemed savings approach is used to claim savings for all eligible systems, however, no mention of this deemed savings approach is found in any of the EPE or AEP program manuals. The deemed savings approach used is the same as is used by Oncor, and listed below in the section on *Savings Algorithms and Input Variables*.

¹⁴⁷ This criteria is stated in the 2013 Oncor Technical Resource Manual for Solar Electric (Photovoltaic) Energy Systems.

¹⁴⁸ Additional requirements on mounting systems, AC disconnects, and systems with integrated battery backup can be found in the program manuals.

¹⁴⁹ PVWatts[™]. A Performance Calculator for Grid-Connected PV Systems. National Renewable Energy Laboratory (NREL). <u>http://rredc.nrel.gov/solar/calculators/pvwatts/version1/</u>. Accessed 09/09/2013.

¹⁵⁰ Optimally-sited system is determined by selecting an appropriate location, entering system capacity in kWdc, and accepting default parameters for tilt (latitude tilt), orientation (due south), and derating factor (0.77) into the PVWatts calculator.

The EPE and AEP program manuals actually discuss the method of savings calculations as an M&V Methodology, however, project desk reviews performed for the 2012 evaluations did not find any of these M&V methods being used. The M&V methodology, which is currently being used by Oncor for non-standard installations, is listed below in the section titled, *M&V Methodology*.

Baseline Condition

PV system not currently installed (typical), or production capacity of an existing system is less than any utility requirements, so that additional panels can be added.

High-Efficiency Condition

PV systems must meet the eligibility criteria shown above to be eligible for incentives.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The deemed energy and demand savings methodology is used by all utilities. Oncor uses an alternate approach for 'non-standard' installations.

Energy and demand savings methodology for standard installations use a deemed algorithm based on the system size and are provided here. Oncor is the only utility that provides these savings equations in their program manual, but AEP and EPE also use these algorithms¹⁵¹.

Deemed Energy Savings $[kWh] = 1.6 \times WattsDC_{STC}$

Equation 112

Deemed Demand Savings $[kW] = 0.83 \times kWDC_{STC}$

Equation 113

Where:

1.6	=	Energy factor listed in Oncor's Program Manual ¹⁵²
0.83	=	Demand factor listed in Oncor's Program Manual ¹⁵²
WattsDCSTC	=	The system's factory-rated output at standard test conditions (STC), which assumes 1,000 W/m ² of solar radiation and 25°C cell operating temperature

¹⁵¹ Per email correspondence with Frontier, and verified through desk reviews.

¹⁵² The source of this value is unknown.

For non-standard Oncor installations, the method of calculating savings is the same, based on the deemed savings methodology; however, additional information has to be collected to ensure that these projects are still eligible to be incentivized. See the section labeled *Program Tracking Data & Evaluation Requirements* below to see the additional information needing to be collected.

M&V Methodology¹⁵³

The program manuals for El Paso Electric (EPE) and AEP make no mention of using a deemed savings approach, but instead, base their savings off of National Renewable Energy Laboratory's (NREL) PVWatts[™] calculator, version 1. EPE and AEP also both require the installation of a PV generation meter. This meter is read by Frontier after one year¹⁵⁴.

The estimated annual electrical energy output of the proposed system shall be derived from PVWatts[™] and shall consider separately the effects of tilt, orientation and shading on each array and/or string, as appropriate. The effect of shading shall be determined using a Solar Pathfinder or equivalent instrument. As a general rule, multiple shading measurements should be made along the lower or southern edge of an array, and/or locations where shading is most prevalent.

Non-Standard Installation:

PUCT Docket No. 40885 allows for alternative means for estimating deemed savings for solar PV systems for non-standard installations, allowing commercial customers around the state access to utility incentives for systems installed on roofs – or portions of roofs – that are not within 20 degrees of south, or for which the tilt angle must exceed 15 degrees from horizontal due to site specific considerations. The proposed alternative would also facilitate the installation of single-axis or two-axis tracking systems.

For those solar PV installations that do not conform to the installation standards of the existing deemed savings, the deemed demand and energy savings be established by modeling the performance of the system using PVWatts[™] Version1.

Claimed Peak Demand Savings

Demand savings is currently calculated from the equation shown. There is no peak demand period associated with the calculation, but PV is clearly a summer peaking measure. It is worth noting that the peak output for a PV system typically occurs about 1 pm, which is much earlier than the typical utility *system* peak demand hour.

Measure Life and Lifetime Savings

The Effective Useful Life (EUL) for solar PV has been set at 30 years, based on PUCT Docket No. 36779.

¹⁵³ Desk reviews of solar PV projects in EPE and AEP found no record that this approach is being used.

¹⁵⁴ It is not clear what this energy reading is actually used for. It is not used in their claimed energy savings.

Additional Calculators and Tools

Oncor's Solar PV Savings Summary Sheet Using PV Watts. This calculator provides deemed savings estimates for standard-installation PV systems. For non-standard installation PV systems, the results from PVWatts[™] or from M&V should be input into the calculator.

Program Tracking Data & Evaluation Requirements

The following information will be required to be collected to determine the project eligibility.

Project location (city)

DC rating for the system

Standard or Non-Standard System

Savings approach type: Deemed algorithm or PVWatts™

System Latitude

System Tilt

System Azimuth

References and Efficiency Standards

Petitions and Rulings

PUCT Docket 40885 – Allows for alternative means for estimating deemed savings for solar PV systems is proposed for unconventional installations, allowing commercial customers around the state access to utility incentives for systems installed on roofs – or portions of roofs – that are not within 20 degrees of south, or for which the tilt angle must exceed 15 degrees from horizontal due to site specific considerations. The proposed alternative would also facilitate the installation of single-axis or two-axis tracking systems.

PUCT Docket 36779 – Provides estimate for EUL.

Relevant Standards and Reference Sources

El Paso Electric Solar PV Pilot Program Guidebook. Program Year 2013. <u>http://www.txreincentives.com/elpasopv/documents/El%20Paso%20Electric%202013</u> <u>%20Program%20Guidebook%2020130118.pdf</u>. Accessed 09/09/2013.

AEP. SMART Source Solar PV Program Guidebook. Program Year 2013. <u>http://www.txreincentives.com/apv/documents/AEP-TCC%20AEP-</u> <u>TNC%20SWEPCO%20PV%20Program%20Guidebook%202013%2020130204.pdf</u>. Accessed 09/09/2013. Oncor. Solar Photovoltaic Standard Offer Program. <u>https://www.oncoreepm.com/SolarPV.aspx</u>. Accessed 09/09/2013.

Document Revision History

Table 2-111: Nonresidential Solar Photovoltaic History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

2.8 NONRESIDENTIAL: LOAD MANAGEMENT

2.8.1 Load Curtailment Measure Overview

TRM Measure ID: NR-LM-LC

Market Sector: Commercial

Measure Category: Load Management

Applicable Building Types: Any building that meets Minimum facility demand requirements (see Table 2-112)

Fuels Affected: Electricity

Decision/Action Type: N/A

Program Delivery Type: Load Control

Deemed Savings Type: Deemed Savings Calculation

Savings Methodology: M&V

Measure Description

This document presents the deemed savings methodology for participation in a load management program that involves the curtailment of an interruptible load during the summer peak period. Different utilities offer different details on their programs, but they all have similar eligibility criteria, listed below:

Eligibility Criteria

A project will be eligible for rebates under the Load Management SOP program if the following criteria are met:

• Each meter included in a project must include a total potential demand savings of a specified minimum kW (varies by utility, as seen in Table 2-112) during the summer peak period as defined in Table 2-113.

Utility	Minimum Demand Savings [kW]
Oncor	100
TNMP	50 ¹⁵⁵
AEP (TNC, TCC & SWEPCO)	50
Xcel	100 ¹⁵⁶
CenterPoint	100
Sharyland	100 ¹⁵⁶
Entergy	250
El Paso Electric	100

Table 2-112: Minimum Facility Demand Savings by Utility

Table 2-113: Peak Demand	Period by Utility
--------------------------	-------------------

Utility	Hours	Months	Exceptions
Oncor, AEP, TNMP, CenterPoint, Sharyland, Entergy, El Paso Electric	1PM – 7PM	June, July, August, September	Weekends, Federal Holidays
Xcel	12PM – 8PM ¹⁵⁷	June, July, August, September	Weekends, Federal Holidays

- A project may involve curtailable load at more than one customer facility, provided the curtailment demand savings at the facilities are reported using the Project.
- The Service Provider agrees to verify that the curtailable load that is being used in its application will not be used and counted in any other curtailable load or demand response program during the duration of the customer contract. Service Provider will notify the Utility Company within 15 business days of any change in the status of the curtailable load or its inclusion in another demand response program.
- Curtailable load must produce demand savings through a curtailment of electrical consumption during the performance period.
- Service providers must commit to making the curtailable load available during the summer peak period for the program.

¹⁵⁵ TNMP prefers that project sponsors be capable of providing at least 50 kW of peak demand reduction at each site for which load reduction is offered; however, TNMP may accept applications including sites providing less than 50kW of peak demand reduction in the interest of meeting its peak load reduction targets.

¹⁵⁶ The utility prefers that project sponsors be capable of providing at least 100kW of peak demand reduction at each site for which load reduction is offered; however, the utility may accept applications including sites providing less than 100kW of peak demand reduction in the interest of meeting its peak load reduction targets.

¹⁵⁷ Note that although Xcel starts and ends events outside the 1 pm to 7 pm period, Xcel only claims savings for deliveries during the rule-defined 1-7 pm peak period.

• Be served by an Interval Data Recorder (IDR) and/or smart meter that is monitored by the utility.

The following loads are excluded for consideration:

- A customer who has load contracted with a REP where that contract prevents the load from participating in a curtailment.
- Loads where curtailment would result in negative environmental or health effects.
- Curtailable load that receives an incentive through any other energy efficiency program.
- Curtailable load that takes electric service at transmission voltage and that serves a forprofit end-use customer.

Baseline Condition

No existing load control of a specific end use, equipment, or circuit load.

High-Efficiency Condition

A load control device is installed on that specific end use, equipment, or circuit load.

Additional Utility Program Details

Each utility in Texas provides slightly different guidelines for their load management program. These details differ in the length of the unscheduled interruptions (also called curtailments), the maximum number or maximum number of hours of unscheduled interruptions, and the length of notification provided to the service providers. Table 2-114 below highlights these differences.

Each utility states that participants will be willing to participate in a maximum number of unscheduled interruptions, or a maximum number of scheduled (test) interruption hours. In addition to these, all utilities except for Xcel require that a scheduled interruption be performed. The purpose of this is to ensure that the service providers will be able to curtail the requested kW within the required notification time and to provide an estimate of the load reduction in the event that no unscheduled interruptions occur during the season. Additionally, some of the utilities offer different options for their customers to choose from. These options are shown in Table 2-115 through Table 2-117.

Utility	Options Available	Scheduled Interruptio n Length	Maximum Length	Notification Required	Maximum Unscheduled Interruptions
Oncor	No	3 hours	4 hours	1 hour	25 hours
AEP (TCC & TNC)	See Table 2-115	1 hour	2 hours or 4 hours	1 hour	4, 8, or 12 interruptions
AEP SWPECO	See Table 2-116	1 hour	2 hours or 4 hours	1 hour	4 or 12 interruptions
TNMP	No	1-2 hours	4 hours	30 minutes	4 interruptions; 18 hours
CenterPoint	No	1-3 hours	4 hours	30 minutes	4 interruptions
Xcel	See Table 2-117		4 hours	1 hour	6 or 12 interruptions; 24 or 48 hours
Sharyland Utilities	No	1-2 hours	4 hours	1 hour	4 interruptions; 18 hours
Entergy	No	1 hour	4 hours		4 interruptions
El Paso Electric	No	1-5 hours	5 hours	1 hour	9 interruptions; 50 hours

Table 2-114: Utility Program Details Overview

Table 2-115: AEP (TNC & TCC) Interruption Options

Option	Maximum of Unscheduled Interruptions	Minimum Length	Maximum Length
А	4	1	4
В	12	1	4
С	12	1	2
D	8	1	4
Е	8	1	2

Table 2-116: AEP (SWPECO) Interruption Options

Option	Maximum of Unscheduled Interruptions	Minimum Length	Maximum Length
А	4	1	4
В	12	1	4
С	12	1	2

Table 2-117: Xcel Interruption Options

Option	Maximum of Unscheduled Interruptions	Maximum Length
A	6	4
В	12	4

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

For load control devices, the energy savings is typically insignificant due the relatively short curtailment periods, so only the demand impact is addressed here¹⁵⁸. IDR or Advanced Meter data associated with the project is used to calculate both the baseline demand usage for each interruption, along with the curtailment period demand usage. Each utility calculates their baseline slightly differently, but the Verified Demand Savings for the curtailment period is the same, and uses the following algorithm:

Verified Demand Savings = Baseline Period kW - Curtailment kW

Equation 114

Where:

Baseline Period kW	=	Baseline average demand over the time periods listed in Table 2-118
Curtailment kW	=	Average demand measured during the curtailment period

¹⁵⁸ Some utilities do determine energy savings, which would be calculated as the difference between the baseline and curtailment kW values times the length of the event.

Utility	Number of Previous Weekdays Required	Time Averaged During Previous Weekdays	Other Hours Averaged
Oncor	5	Same time as that of interruption	
AEP (TNC, TCC, SWEPCO)	4	Same time as that of interruption	
TNMP	4	Same time as that of interruption	1 hour, 2 hours before the start of curtailment
CenterPoint	4	Same time as that of interruption	1 hour, 1.5 hours before the start of curtailment
Xcel, Sharyland, El Paso Electric	4	Same time as that of interruption	1 hour, 2 hours before the start of curtailment
Entergy	4	1 hour, 2 hours before start of curtailment	1 hour, 2 hours before the start of curtailment

Table 2-118: Utility Verification Plan Overview

Measure Life and Lifetime Savings

N/A

Additional Calculators and Tools

N/A

Program Tracking Data & Evaluation Requirements

• IDR or Advanced Meter data associated with the project will be provided by the Service Provider following an event. Depending on the utility, the data will be provided in 15¹⁵⁹ minute increments to evaluate both baseline demand usage and demand usage during curtailment.

References and Efficiency Standards

Petitions and Rulings

N/A

Relevant Standards and Reference Sources

• El Paso Electric EOE 2010 Load Management Program Manual. http://www.epelectricefficiency.com/files/EPE_LM_10_ProgramManual.pdf. Accessed 09/06/2013.

¹⁵⁹ El Paso Electric requires 30 minute intervals.

- AEP: Texas North Company Load Management SOP 2013 Program Manual.
- AEP: Texas Central Company Load Management SOP 2013 Program Manual.http://www.aepefficiency.com/loadmanagement/TCC/2013_TCC_LM%20Manu al_Agreement.pdf. Accessed 09/06/2013.
- AEP: Southwestern Electric Power Company Load Management 2013 Program Manual. http://www.swepcogridsmart.com/texas/downloads/Load%20Management%20Program %20Manual.pdf. Accessed 09/06/2013
- Entergy 2013 Load Management Handbook. http://www.entergytexas.com/content/energy_efficiency/documents/Load_Management_Handbook.pdf. Accessed 09/06/2013.
- CenterPoint EnergyShare 2013 Program Manual. http://www.centerpointelectric.com/staticfiles/CNP/Common/SiteAssets/doc/2013%20L oad%20Management%20Program%20Manual.pdf. Accessed 09/06/2013.
- Texas-New Mexico Load Management 2013 SOP. http://tnmpefficiency.com/downloads/Load_Management_Program_Manual.pdf. Accessed 09/06/2013.
- Xcel Energy 2013 Load Management Pilot Standard Offer Program. http://www.xcelefficiency.com/TX/Xcel_LM_Manual_2013.pdf. Accessed 09/06/2013.
- Sharyland Utilities 2013 Load Management SOP. http://www.sharylandefficiency.com/loadmanagement/Sharyland%202013%20Peak%20Load%20Mgmt%20Program%20Manu al.pdf. Accessed 09/06/2013.
- Oncor. Commercial Load Management Standard Offer Program. https://www.oncoreepm.com/commload.aspx. Accessed 09/06/2013.

Document Revision History

Version	Date	Description of Change
1	11/25/2013	TRM V1 origin

Table 2-119: Nonresidential Demand Response Load Management History

APPENDIX B: NONRESIDENTIAL LIGHTING FACTORS COMPARISON TABLES

The following appendix shows a comparison of deemed values used across utilities and implementers for the following lighting measure inputs, by building type:

- Hours of Operation (HOU)
- Coincidence Factors (CF)
- Energy Adjustment Factors (EAF)
- Power Adjustment Factors (PAF)

		Operating Hours				
Building Type Code	Building Type Description	Docket 39146 ¹⁶¹	LSF Calculators	Oncor Calculator	CenterPoint Calculator	
Educ. K-12, No Summer	Education (K-12 w/o Summer Session)	2,777	2,777	2,777	2,777	
Education, Summer	Education: College, University, Vocational, Day Care, and K-12 w/ Summer Session	3,577	3,577	3,577	3,577	
Non-24-Hr Retail	Food Sales – Non-24-Hr Supermarket/Retail	4,706	4,706	4,706	4,706	
24-Hr Retail	24-Hr Supermarket/Retail	6,900	6,900	6,900	6,900	
Fast Food	Food Service – Fast Food	6,188	6,188	6,188	6,188	
Sit-down Rest.	Food Service – Sit-down Restaurant	4,368	4,368	4,368	4,368	
Health In	Health Care (In Patient)	5,730	5,730	5,730	5,730	
Health Out	Health Care (Out Patient)	3,386	3,386	3,386	3,386	
Lodging, Common	Lodging (Hotel/Motel/Dorm), Common Area	6,630	6,630	6,630	6,630	
Lodging, Rooms	Lodging (Hotel/Motel/Dorm), Rooms	3,055	3,055	3,055	3,055	
Manufacturing	Manufacturing	5,740	5,740	5,740	5,740	
MF Common	Multi-family Housing, Common Areas	4,772	4,772	4,772	4,772	
Nursing Home	Nursing and Residential Care	4,271	4,271	4,271	4,271	
Office	Office	3,737	3,737	3,737	3,737	
Outdoor	Outdoor Lighting Photo-Controlled	3,996	3,996	4,145*	3,996	
Parking	Parking Structure	7,884	7,884	7,884	7,884	
Public Assembly	Public Assembly	2,638	2,638	2,638	2,638	
Public Order	Public Order and Safety	3,472	3,472	3,472	3,472	
Religious	Religious Worship	1,824	1,824	1,824	1,824	
Retail Non- mall/strip	Retail (Excl. Mall and Strip Center)	3,668	3,668	3,668	3,668	
Enclosed Mall	Retail (Enclosed Mall)	4,813	4,813	4,813	4,813	

Table 0-1: Operating Hours Building Type, By Utility¹⁶⁰

 ¹⁶⁰ Discrepancies from PUCT Docket No. 39146 are denoted by an asterisk (*).
 ¹⁶¹ These values were sourced from PUCT Docket No. 39146, Table 8.
 ¹⁶² LSF Calculators used by Xcel, Sharyland, AEP, EPE, and Etergy. 2013 Lighting Survey Form (LSF). Specified calculator versions are: Xcel v7.01, EPE v7.02, Sharyland, v8.01.
 ¹⁶³ Oncor Calculator, 2013 E1 – Lighting (Retrofit) and 2013 N1 – Lighting (New Construction).
 ¹⁶⁴ CenterPoint Calculator. 2013 Commercial & Industrial Standard Offer Program, Lighting Savings Calculator developed by Nexant, v11.14.12.

Building Type Code	Building Type Description	Docket 39146 ¹⁶¹	LSF Calculators	Oncor Calculator	CenterPoint Calculator
Strip/Non- enclosed Mall	Retail (Strip Center and Non-enclosed Mall)	3,965	3,965	3,965	3,965
Service (Non- food)	Service (Excl. Food)	3,406	3,406	3,406	3,406
Non-refrig. Warehouse	Warehouse (Non-refrigerated)	3,501	3,501	3,501	3,501
Refrig. Warehouse	Warehouse (Refrigerated)	3,798	3,798	3,798	3,798

		Coincidence Factors					
Building Type Code	Building Type Description	Docket 39146 ¹⁶⁶	LSF Calculators	Oncor Calculator	CenterPoint Calculator ¹⁶⁹		
Educ. K-12, No Summer	Education (K-12 w/o Summer Session)	47%	47%	47%	47%		
Education, Summer	Education: College, University, Vocational, Day Care, and K-12 w/ Summer Session	69%	69%	69%	69%		
Non-24-Hr Retail	Food Sales – Non-24-Hr Supermarket/Retail	95%	95%	95%	95%		
24-Hr Retail	24-Hr Supermarket/Retail	95%	95%	95%	95%		
Fast Food	Food Service – Fast Food			81%	81%		
Sit-down Rest.	Food Service – Sit-down Restaurant	81%	81%	81%	81%		
Health In	Health Care (In Patient)	78%	78%	78%	78%		
Health Out	Health Care (Out Patient)	77%	77%	77%	77%		
Lodging, Common	Lodging (Hotel/Motel/Dorm), Common Area	82%	82%	82%	82%		
Lodging, Rooms	Lodging (Hotel/Motel/Dorm), Rooms	25%	25%	25%	25%		
Manufacturing	Manufacturing	73%	73%	73%	73%		
MF Common	Multi-family Housing, Common Areas	87%	87%	87%	87%		
Nursing Home	Nursing and Residential Care	78%	78%	78%	78%		
Office	Office	77%	77%	77%	77%		
Outdoor	Outdoor Lighting Photo-Controlled	0%	0%/61%*	64%*	0%		
Parking	Parking Structure	100%	100%	100%	100%		
Public Assembly	Public Assembly	56%	56%	56%	56%		
Public Order	Public Order and Safety	75%	75%	75%	75%		
Religious	Religious Worship	53%	53%	53%	53%		

Table 0-2: Coincidence Factors Building Type, By Utility¹⁶⁵

¹⁶⁵ Discrepancies from PUCT Docket No. 39146 are denoted by an asterisk (*). In the event of two numbers in the cell, the first number refers to the Summer Peak CF, and the second number refers to the Winter Peak CF.
 ¹⁶⁶ These values were sourced from PUCT Docket No. 39146, Table 8.
 ¹⁶⁷ LSF Calculators used by Xcel, Sharyland, AEP, EPE, and Etergy. 2013 Lighting Survey Form (LSF). Specified calculator versions are: Xcel

v7.01, EPE v7.02, Sharyland, v8.01. ¹⁶⁸ Oncor Calculator, 2013 E1 – Lighting (Retrofit) and 2013 N1 – Lighting (New Construction). ¹⁶⁹ CenterPoint Calculator. 2013 Commercial & Industrial Standard Offer Program, Lighting Savings Calculator developed by Nexant, v11.14.12.

			Coincide	ence Factors	tors	
Building Type Code	Building Type Description	Docket 39146 ¹⁶⁶	LSF Calculators	Oncor Calculator	CenterPoint Calculator ¹⁶⁹	
Retail Non- mall/strip	Retail (Excl. Mall and Strip Center)	90%	90%	90%	90%	
Enclosed Mall	Retail (Enclosed Mall)	93%	93%	93%	93%	
Strip/Non- enclosed Mall	Retail (Strip Center and Non-enclosed Mall)	90%	90%	90%	90%	
Service (Non- food)	Service (Excl. Food)	90%	90%	90%	90%	
Non-refrig. Warehouse	Warehouse (Non-refrigerated)	77%	77%	77%	77%	
Refrig. Warehouse	Warehouse (Refrigerated)	84%	84%	84%	84%	

		Lighting Power	Lighting Power Density (LPD) for New Construction				
Building Type Code	Building Type Description	Oncor Calculator ¹⁷¹	CenterPoint Calculator ¹⁷²	LSF Calculators ¹⁷³			
Automotive Facility		0.90		0.90			
Convention Center		1.20		1.20			
Court House		1.20		1.20			
Dining: Bar Lounge/Leisure		1.30		1.30			
Dining: Cafeteria/Fast Food		1.40		1.40			
Dining: Family		1.60		1.60			
Dormitory		1.00		1.00			
Exercise Center		1.00		1.00			
Gymnasium		1.10		1.10			
Health Center		1.00		1.00			
Hospital		1.20		1.20			
Hotel		1.00		1.00			
Library		1.30		1.30			
Manufacturing Facility		1.30		1.30			
Motel		1.00		1.00			
Motion Picture Theater		1.20		1.20			
Multi-family		0.70		0.70			
Museum		1.10		1.10			
Penitentiary		1.00		1.00			
Performing Arts Theater		1.60		1.60			
Police/Fire Station		1.00		1.00			
Post Office		1.10		1.10			
Retail		1.50		1.50			

Table 0-3. Lighting Power Densities, By Building Type, By Utility¹⁷⁰

¹⁷³ LSF Calculators used by Xcel, Sharyland, AEP, EPE, and Etergy. 2013 Lighting Survey Form (LSF). Specified calculator versions are: Xcel v7.01, EPE v7.02, Sharyland, v8.01, TNMP v4.18.

¹⁷⁰ Building Type Code has been pulled from PUCT Docket No. 39146 to show the variation between Building Type Codes used for HOU and CF, and Building Type Codes used for LPDs. Records where a Building Type Description has been listed, but no Building Type Code have been pulled from the calculator utilizing those specific LPDs. Building Types from the Lighting HOU and CF tables are denoted by an asterisk (*). ¹⁷¹ Oncor Calculator, 2013 N1 – Lighting (New Construction).
 ¹⁷² CenterPoint Calculator. 2013 Commercial & Industrial Standard Offer Program, Lighting Savings Calculator developed by Nexant, v11.14.12.

		Lighting Power	Lighting Power Density (LPD) for New Construction				
Building Type Code	Building Type Description	Oncor Calculator ¹⁷¹	CenterPoint Calculator ¹⁷²	LSF Calculators ¹⁷³			
School/University		1.20		1.20			
Sports Arena		1.10		1.10			
Town Hall		1.10		1.10			
Transportation		1.00		1.00			
Warehouse		0.80		0.80			
Workshop		1.40		1.40			
Educ K-12, No Summer*	Education (K-12 w/o Summer Session)		1.20				
Education, Summer*	Education: College, University, Vocational, Day Care, and K-12 w/ Summer Session		1.20				
Non-24-Hr Retail*	Food Sales – Non-24-Hr Supermarket/Retail		1.50				
24-Hr Retail*	24-Hr Supermarket/Retail		1.50				
Fast Food*	Food Service – Fast Food		1.40				
Sit-down Rest.*	Food Service – Sit-down Restaurant		1.30				
	Food Service – Sit-down Restaurant - Dining: Bar Lounge/Leisure		1.30				
Health In*	Health Care (In Patient)		1.20				
Health Out*	Health Care (Out Patient)		1.00				
Lodging, Common*	Lodging (Hotel/Motel/Dorm), Common Area		1.00				
Lodging, Rooms*	Lodging (Hotel/Motel/Dorm), Rooms		1.00				
Manufacturing*	Manufacturing		1.30				
MF Common*	Multi-family Housing, Common Areas		0.70				
Nursing Home*	Nursing and Residential Care		1.20				
Office*	Office	1.00	1.00	1.00			
	Outdoor - Outdoor Uncovered Parking Area: Zone 1		0.04	0.04			
	Outdoor - Outdoor Uncovered Parking Area: Zone 2		0.06	0.06			
	Outdoor - Outdoor Uncovered Parking Area: Zone 3		0.10	0.10			
	Outdoor - Outdoor Uncovered Parking Area: Zone 4		0.13	0.13			
Outdoor*	Outdoor Lighting Photo-Controlled		0.15				
Parking*	Parking Structure	0.30	0.30	0.30			
Public Assembly*	Public Assembly						
	Public Assembly - Convention Center		1.20				
	Public Assembly - Exercise Center		1.00				
	Public Assembly - Gymnasium		1.10				

		Lighting Power	Density (LPD) for N	ew Construction	
Building Type Code	Building Type Description	Oncor Calculator ¹⁷¹	CenterPoint Calculator ¹⁷²	LSF Calculators ¹⁷³	
	Public Assembly - Hospital		1.20		
	Public Assembly - Library		1.30		
	Public Assembly - Motion Picture Theater		1.20		
	Public Assembly - Museum		1.10		
	Public Assembly - Performing Arts Theater		1.60		
	Public Assembly - Post Office		1.10		
	Public Assembly - Sports Arena		1.10		
	Public Assembly - Transportation		1.00		
	Public Order and Safety - Court House		1.20		
	Public Order and Safety - Penitentiary		1.00		
	Public Order and Safety - Police/Fire Station		1.00		
Public Order*	Public Order and Safety				
Religious*	Religious Worship	1.30	1.30	1.30	
Retail Non-mall/strip*	Retail (Excl. Mall and Strip Center)		1.50		
Enclosed Mall*	Retail (Enclosed Mall)		1.50		
Strip/Non-enclosed Mall*	Retail (Strip Center and Non-enclosed Mall)		1.50		
Service (Non-food)*	Service (Excl. Food)		0.90		
Non-refrig. Warehouse*	Warehouse (Non-refrigerated)		0.80		
Refrig. Warehouse*	Warehouse (Refrigerated)		0.80		

		Energy Adjustment Factors				
Building Type Code	Control Codes	Docket 40668 ¹⁷⁵	LSF Calculators ¹⁷⁶	Oncor Calculator (Retrofit) ¹⁷⁷	Oncor Calculator (New Construction) ¹⁷⁸	
No controls measures	None	1.00	1.00	1.00	1.00	
Stipulated DC - Continuous Dimming	DC- cont	0.70	0.70	0.70	0.70	
Stipulated DC - Multiple Step Dimming	DC- step	0.80	0.80	0.80	0.80	
Stipulated DC - ON/OFF (Indoor)	Indoor DC - on/off	0.90	0.90	0.90	0.90	
Stipulated DC - ON/OFF (Outdoor)	Outdoor DC - on/off	1.00	1.00	0.64*	0.64*	
Stipulated Occupancy Sensor (OS)	OS	0.70	0.70	0.70	0.70	
Stipulated OS w/DC - Continuous Dimming	OS - cont	0.60	0.60	0.60	0.60	
Stipulated OS w/DC - Multiple Step Dimming	OS - step	0.65	0.65	0.65	0.65	
Stipulated OS w/DC - ON/OFF (Indoor)	Indoor OS - on/off	0.65	0.65	0.65	0.65	
Photocontrol	Photo			1.00*		

Table 0-4. Energy Adjustment Factors By Utility¹⁷⁴

 ¹⁷⁴ Discrepancies from PUCT Docket No. 40668 are denoted by an asterisk (*). The EAF is applicable to all building types.
 ¹⁷⁵ These values were sourced from PUCT Docket No. 40668, Page A-24.
 ¹⁷⁶ LSF Calculators used by Xcel, Sharyland, AEP, EPE, and Etergy. 2013 Lighting Survey Form (LSF). Specified calculator versions are: Xcel v7.01, EPE v7.02, Sharyland, v8.01, TNMP v4.18.
 ¹⁷⁷ Oncor Calculator, 2013 E1 – Lighting (Retrofit).
 ¹⁷⁸ Oncor Calculator, 2013 N1 – Lighting (New Construction).

				Dema	and Adjustmer	nt Factors		
	Control	Docke	t 40668 ¹⁸⁰	LSF Cal	Calculators ¹⁸¹ Oncor Calculat		alculator ¹⁸²	CenterPoint Calculator ¹⁸³
Building Type Code	Codes	K-12, No Summer	All Remaining Building Types	K-12, No Summer	All Remaining Building Types	K-12, No Summer	All Remaining Building Types	All Building Types
No Controls Measures	None	1.00	1.00	1.00	1.00	1.00	1.00	*
Stipulated DC - Continuous Dimming	DC- cont	0.76	0.70	0.76	0.70	0.76	0.70	0.70
Stipulated DC - Multiple Step Dimming	DC- step	0.84	0.80	0.84	0.80	0.84	0.80	0.80
Stipulated DC - ON/OFF (Indoor)	Indoor DC - on/off	0.92	0.90	0.92	0.90	0.92	0.90	0.90
Stipulated DC - ON/OFF (Outdoor)	Outdoor DC - on/off	1.00	1.00	1.00	1.00	0.64*	0.64*	0.90*
Stipulated Occupancy Sensor (OS)	OS	0.80	0.75	0.80	0.75	0.80	0.75	0.70*
Stipulated OS w/DC - Continuous Dimming	OS - cont	0.72	0.65	0.72	0.65	0.72	0.65	0.60*
Stipulated OS w/DC - Multiple Step Dimming	OS - step	0.76	0.70	0.76	0.70	0.76	0.70	0.65*
Stipulated OS w/DC - ON/OFF (Indoor)	Indoor OS - on/off	0.76	0.70	0.76	0.70	0.76	0.70	0.65*
Photocontrol	Photo							

Table 0-5. Demand Adjustment Factors By Utility¹⁷⁹

 ¹⁷⁹ Discrepancies from PUCT Docket No. 40668 are denoted by an asterisk (*).
 ¹⁸⁰ These values were sourced from PUCT Docket No. 40668, Page A-24.
 ¹⁸¹ LSF Calculators used by Xcel, Sharyland, AEP, EPE, and Etergy. 2013 Lighting Survey Form (LSF). Specified calculator versions are: Xcel v7.01, EPE v7.02, Sharyland, v8.01, TNMP v4.18.
 ¹⁸² Oncor Calculator, 2013 E1 – Lighting (Retrofit) and 2013 N1 – Lighting (New Construction).
 ¹⁸³ CenterPoint Calculator. 2013 Commercial & Industrial Standard Offer Program, Lighting Savings Calculator developed by Nexant, v11.14.12.